首页> 外文OA文献 >Semantics and loop invariant synthesis for probabilistic programs
【2h】

Semantics and loop invariant synthesis for probabilistic programs

机译:概率程序的语义和循环不变式综合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis we consider sequential probabilistic programs. Such programsare a means to model randomised algorithms in computer science. They facilitatethe formal analysis of performance and correctness of algorithms or securityaspects of protocols.We develop an operational semantics for probabilistic programs and showit to be equivalent to the expectation transformer semantics due to McIver andMorgan. This connection between the two kinds of semantics provides a deeperunderstanding of the behaviour of probabilistic programs and is instrumental totransfer results between communities that use transition systems such as Markovdecision processes to reason about probabilistic behaviour and communities thatfocus on deductive verification techniques based on expectation transformers.As a next step, we add the concept of observations and extend both semanticsto facilitate the calculation of expectations which are conditioned on the fact thatno observation is violated during the program’s execution. Our main contributionhere is to explore issues that arise with non-terminating, non-deterministic or infeasibleprograms and provide semantics that are generally applicable. Additionally,we discuss several program transformations to facilitate the understandingof conditioning in probabilistic programming.In the last part of the thesis we turn our attention to the automated verificationof probabilistic programs. We are interested in automating inductive verificationtechniques. As usual the main obstacle in program analysis are loopswhich require either the calculation of fixed points or the generation of inductiveinvariants for their analysis. This task, which is already hard for standard, i.e.non-probabilistic, programs, becomes even more challenging as our reasoningbecomes quantitative. We focus on a technique to generate quantitative loop invariantsfrom user defined templates. This approach is implemented in a softwaretool called Prinsys and evaluated on several examples.
机译:在本文中,我们考虑了顺序概率程序。这样的程序是在计算机科学中对随机算法建模的一种手段。它们有助于形式化分析算法的性能和正确性或协议的安全性。我们为概率程序开发了一种操作语义,并表现出与McIver和Morgan所期望的转换器语义等效。两种语义之间的这种联系提供了对概率程序行为的更深刻理解,并且有助于在使用过渡系统(例如马尔可夫决策过程)推理概率行为的社区与专注于基于期望转换器的演绎验证技术的社区之间传递结果。下一步,我们添加观察的概念,并扩展这两种语义,以便于期望的计算,该期望的前提是程序执行期间没有违反观察的事实。我们在这里的主要贡献是探索非终止,不确定性或不可行程序引起的问题,并提供通常适用的语义。此外,我们讨论了几种程序转换,以促进对概率编程中条件条件的理解。在论文的最后一部分,我们将注意力转移到概率程序的自动验证上。我们对自动化归纳验证技术感兴趣。通常,程序分析中的主要障碍是循环,这些循环需要计算不动点或生成感应不变式进行分析。随着我们的推理变得定量化,这项对于标准程序(即非概率性程序)来说已经很困难的任务变得更具挑战性。我们专注于从用户定义的模板生成定量循环不变式的技术。该方法在称为Prinsys的软件工具中实现,并在几个示例中进行了评估。

著录项

  • 作者

    Gretz Friedrich;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号