首页> 外文OA文献 >Model-based clustering based on sparse finite Gaussian mixtures
【2h】

Model-based clustering based on sparse finite Gaussian mixtures

机译:基于稀疏有限高斯混合的基于模型的聚类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the framework of Bayesian model-based clustering based on a finite mixture of Gaussian distributions, we present a joint approach to estimate the number of mixture components and identify cluster-relevant variables simultaneously as well as to obtain an identified model. Our approach consists in specifying sparse hierarchical priors on the mixture weights and component means. In a deliberately overfitting mixture model the sparse prior on the weights empties superfluous components during MCMC. A straightforward estimator for the true number of components is given by the most frequent number of non-empty components visited during MCMC sampling. Specifying a shrinkage prior, namely the normal gamma prior, on the component means leads to improved parameter estimates as well as identification of cluster-relevant variables. After estimating the mixture model using MCMC methods based on data augmentation and Gibbs sampling, an identified model is obtained by relabeling the MCMC output in the point process representation of the draws. This is performed using K-centroids cluster analysis based on the Mahalanobis distance. We evaluate our proposed strategy in a simulation setup with artificial data and by applying it to benchmark data sets. (authors' abstract)
机译:在基于高斯分布的有限混合的基于贝叶斯模型的聚类框架中,我们提出了一种联合方法来估计混合成分的数量并同时识别与聚类相关的变量,以及获得一个已识别的模型。我们的方法包括在混合权重和成分均值上指定稀疏的分层先验。在故意过度拟合的混合模型中,MCMC期间,权重上的稀疏部分清空了多余的组件。通过在MCMC采样过程中访问的非空分量的最频繁数量,可以得出分量的真实数量的简单估算器。在组件上指定收缩先验,即正常的伽玛先验意味着改进的参数估计以及与聚类相关的变量的识别。在基于数据扩充和吉布斯采样的MCMC方法估计混合模型后,通过在抽签的点过程表示中重新标记MCMC输出来获得已识别的模型。这是使用基于马氏距离的K-质心聚类分析来执行的。我们在带有人工数据并将其应用于基准数据集的模拟设置中评估我们提出的策略。 (作者摘要)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号