首页> 外文OA文献 >Monte Carlo Simulation of Boundary Crossing Probabilities for a Brownian Motion and Curved Boundaries
【2h】

Monte Carlo Simulation of Boundary Crossing Probabilities for a Brownian Motion and Curved Boundaries

机译:布朗运动和弯曲边界的边界穿越概率的蒙特卡罗模拟

摘要

We are concerned with the probability that a standard Brownian motion W(t) crosses a curved boundary c(t) on a finite interval [0, T]. Let this probability be denoted by Q(c(t); T). Due to recent advances in research a new way of estimating Q(c(t); T) seems feasible: Monte Carlo Simulation. Wang and Pötzelberger (1997) derived an explicit formula for the boundary crossing probability of piecewise linear functions which has the form of an expectation. Based on this formula we proceed as follows: First we approximate the general boundary c(t) by a piecewise linear function cm(t) on a uniform partition. Then we simulate Brownian sample paths in order to evaluate the expectation in the formula of the authors for cm(t). The bias resulting when estimating Q(c_m(t); T) rather than Q(c(t); T) can be bounded by a formula of Borovkov and Novikov (2005). Here the standard deviation - or the variance respectively - is the main limiting factor when increasing the accuracy. The main goal of this dissertation is to find and evaluate variance reducing techniques in order to enhance the quality of the Monte Carlo estimator for Q(c(t); T). Among the techniques we discuss are: Antithetic Sampling, Stratified Sampling, Importance Sampling, Control Variates, Transforming the original problem. We analyze each of these techniques thoroughly from a theoretical point of view. Further, we test each technique empirically through simulation experiments on several carefully chosen boundaries. In order to asses our results we set them in relation to a previously established benchmark. As a result of this dissertation we derive some very potent techniques that yield a substantial improvement in terms of accuracy. Further, we provide a detailed record of our simulation experiments. (author's abstract)
机译:我们关注标准布朗运动W(t)在有限间隔[0,T]上越过弯曲边界c(t)的可能性。将该概率表示为Q(c(t); T)。由于研究的最新进展,一种估计Q(c(t); T)的新方法似乎可行:蒙特卡洛模拟。 Wang andPötzelberger(1997)为分段线性函数的边界穿越概率导出了一个明确的公式,该公式具有期望形式。基于此公式,我们可以进行如下操作:首先,我们通过均匀分区上的分段线性函数cm(t)近似总边界c(t)。然后,我们模拟布朗样本路径,以评估作者公式中对cm(t)的期望。估计Q(c_m(t); T)而不是Q(c(t); T)时产生的偏差可以由Borovkov和Novikov(2005)的公式限制。在这里,标准偏差-或分别是方差-是提高精度时的主要限制因素。本文的主要目的是发现和评估方差减少技术,以提高Q(c(t); T)的蒙特卡洛估计的质量。我们讨论的技术包括:对立抽样,分层抽样,重要抽样,控制变量,转化原始问题。我们从理论角度全面分析了每种技术。此外,我们通过在几个精心选择的边界上进行模拟实验,对每种技术进行了经验测试。为了评估我们的结果,我们将它们设置为与先前建立的基准相关。作为本论文的结果,我们得出了一些非常有效的技术,它们在准确性方面产生了实质性的改进。此外,我们提供了模拟实验的详细记录。 (作者的摘要)

著录项

  • 作者

    Drabeck Florian;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号