首页> 外文OA文献 >A Genetic Algorithm Based EvolutionaryudComputational Neural Network forudModelling Spatial Interaction Data
【2h】

A Genetic Algorithm Based EvolutionaryudComputational Neural Network forudModelling Spatial Interaction Data

机译:基于遗传算法的进化 ud计算神经网络对空间互动数据建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Building a feedforward computational neural network model (CNN) involves two distinctudtasks: determination of the network topology and weight estimation. The specification of audproblem adequate network topology is a key issue and the primary focus of this contribution.udUp to now, this issue has been either completely neglected in spatial application domains, orudtackled by search heuristics (see Fischer and Gopal 1994). With the view of modellingudinteractions over geographic space, this paper considers this problem as a globaludoptimization problem and proposes a novel approach that embeds backpropagation learningudinto the evolutionary paradigm of genetic algorithms. This is accomplished by interweaving audgenetic search for finding an optimal CNN topology with gradient-based backpropagationudlearning for determining the network parameters. Thus, the model builder will be relieved ofudthe burden of identifying appropriate CNN-topologies that will allow a problem to be solvedudwith simple, but powerful learning mechanisms, such as backpropagation of gradient descentuderrors. The approach has been applied to the family of three inputs, single hidden layer,udsingle output feedforward CNN models using interregional telecommunication traffic data forudAustria, to illustrate its performance and to evaluate its robustness. (authors' abstract)
机译:建立前馈计算神经网络模型(CNN)涉及两个不同的任务:确定网络拓扑和权重估计。问题适当的网络拓扑结构的规范是一个关键问题,也是此贡献的主要重点。 ud到目前为止,这个问题在空间应用领域中已被完全忽略,或者在搜索启发式技术的帮助下(见Fischer and Gopal 1994) )。考虑到地理空间上的建模/交互作用,本文将这个问题视为全局非优化问题,并提出了一种将反向传播学习 udin嵌入遗传算法进化范式的新方法。这是通过将预算搜索与用于确定网络参数的基于梯度的反向传播 udlearning交织在一起以找到最佳的CNN拓扑来实现的。因此,模型构建者将免去识别适当的CNN拓扑的负担,该负担将允许使用简单但功能强大的学习机制(例如反向传播梯度下降 uderrors)来解决问题。该方法已应用于三个输入的族,即单个隐藏层, udusing输出前馈CNN模型,使用 ud奥地利的区域间电信流量数据来说明其性能并评估其鲁棒性。 (作者摘要)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号