首页> 外文OA文献 >SVM-based Classification Approach for Synthetic-Impulse Microwave Imaging–SVM Input Data
【2h】

SVM-based Classification Approach for Synthetic-Impulse Microwave Imaging–SVM Input Data

机译:基于SVM的合成脉冲微波成像分类方法–SVM输入数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the last years, the learning methodology has been inspired by theory of statistical learning leading up to solutions with good performance and firm mathematical properties. In this framework, the theory of support vector machine (SVM) is based on the interaction between optimization theory and kernel theory [Vapnik 1999]. Recently, widely used machine learning algorithms have been successfully applied in the framework of wireless communication problems [Garcia 2006] and inverse scattering problems [Rekanos 2002][Massa 2005] in order to exploit their generalization capabilities and real-time characteristics. Moreover, when a close solution to the problem at hand does not exist, SVM appears to be a good candidate to solve the optimization problem with a trial and error approach. As for the Synthetic-Impulse Microwave Imaging System (SIMIS) developed at LEAT, the learning methodology adopted for the detection of target position can be considered a supervised learning since it exploits input/output examples that are referred to as the training data. When an underlying function from inputs to outputs exists, it is referred to as the target function. In the framework of classification theory, this function is called decision function and gives binary outputs if a binary classification problem is dealt with, otherwise it gives a finite number of categories for multi-class classification. The computational time saving provided by an online binary classification approach justifies some limitations like the qualitative reconstruction of the object position instead of the quantitative estimation of the electromagnetic properties. Within the integration of a SVM classifier and the SIMIS for objects detection and more in general for the reconstruction of the invetigation area, the main goal consists in the definition of a risk map of the presence of the targets.
机译:在过去的几年中,学习方法受到了统计学习理论的启发,从而得出了具有良好性能和牢固数学特性的解决方案。在此框架中,支持向量机(SVM)的理论基于优化理论和核理论之间的相互作用[Vapnik 1999]。最近,广泛使用的机器学习算法已成功应用于无线通信问题[Garcia 2006]和逆散射问题[Rekanos 2002] [Massa 2005]的框架中,以利用它们的泛化能力和实时特性。而且,当不存在解决当前问题的紧密解决方案时,SVM似乎是通过试错法解决优化问题的理想选择。对于在LEAT开发的合成脉冲微波成像系统(SIMIS),用于检测目标位置的学习方法可被视为监督学习,因为它利用了称为训练数据的输入/输出示例。当存在从输入到输出的基础功能时,它称为目标功能。在分类理论的框架中,此函数称为决策函数,如果处理了二进制分类问题,该函数将提供二进制输出,否则将为多类分类提供有限数量的类别。在线二进制分类方法节省的计算时间证明了某些局限性,例如对象位置的定性重建,而不是电磁特性的定量估计。在SVM分类器和SIMIS的集成(用于对象检测)以及更广泛的用于调查区域重建的集成中,主要目标在于定义目标存在的风险图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号