首页> 外文OA文献 >Automatic motion compensation of free breathing acquired myocardial perfusion data by using independent component analysis
【2h】

Automatic motion compensation of free breathing acquired myocardial perfusion data by using independent component analysis

机译:通过独立分量分析对自由呼吸获得的心肌灌注数据进行自动运动补偿

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time?frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32 ± 12 s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time?intensity curves from .84 ± .19 before registration to .96 ± .06 after registration
机译:使用首过g增强的心肌灌注磁共振成像(MRI)在自由呼吸期间获取的图像表现出准周期性运动模式,如果要对灌注进行进一步的自动分析,则需要对其进行补偿。在这项工作中,我们提出了一种通过结合独立分量分析(ICA)和图像配准来补偿此运动的方法:首先,我们使用ICA和时频分析来识别运动并将其与由对比度引起的强度变化分开代理商。然后,通过重新组合除运动之外的所有独立分量来创建合成参考图像。因此,生成的图像系列不显示运动,并且其图像强度与原始图像系列相似。然后,通过使用多遍图像配准过程来实现运动补偿。我们对从13例患者获得的39个图像系列进行了测试,这些图像系列覆盖了左心室的基底,中部和根尖区域,每个图像由58个灌注图像组成。我们通过将手动跟踪的心肌切片的强度曲线与13个患者数据集(39个不同的切片)进行登记之前和之后的自动生成的强度曲线进行比较,验证了我们的方法。我们比较了基于线性,非线性和组合ICA的配准方法和以前发布的运动补偿方案。考虑到运行时间和准确性,基于两步ICA的运动补偿方案首先优化了平移,然后进行了非线性转换,效果最佳,并且在最近的工作站上以32±12 s的时间完成了整个序列的配准。提出的方案将手动和自动获得的时间强度曲线之间的皮尔逊相关系数从注册前的0.84±.19提高到注册后的.96±.06

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号