We study the múltiple specialization of logic programs basedudon abstract interpretation. This involves in general generating several versions of a program predícate for different uses of such predícate, making use of information obtained from global analysis performed by an abstract interpreter, and finally producing a new, "multiply specialized" program. While the topic of múltiple specialization of logic programs has received considerable theoretical attention, it has never been actually incorporated in a compiler and its effects quantified. We perform such a study in the context of a parallelizing compiler and show that it is indeed a relevant technique in practice. Also, we propose an implementation technique which has the same power as the strongest of the previously proposed techniques but requires little or no modificationudof an existing abstract interpreter.
展开▼