首页> 外文OA文献 >Coupling time-stepping numerical methods and standard aerodynamics codes for instability analysis of flows in complex geometries
【2h】

Coupling time-stepping numerical methods and standard aerodynamics codes for instability analysis of flows in complex geometries

机译:耦合时步数值方法和标准空气动力学代码,用于复杂几何形状中流动的不稳定性分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The development of a global instability analysis code coupling a time-stepping approach, as applied to the solution of BiGlobal and TriGlobal instability analysis 1, 2 and finite-volume-based spatial discretization, as used in standard aerodynamics codes is presented. The key advantage of the time-stepping method over matrix-formulation approaches is that the former provides a solution to the computer-storage issues associated with the latter methodology. To-date both approaches are successfully in use to analyze instability in complex geometries, although their relative advantages have never been quantified. The ultimate goal of the present work is to address this issue in the context of spatial discretization schemes typically used in industry. The time-stepping approach of Chiba 3 has been implemented in conjunction with two direct numerical simulation algorithms, one based on the typically-used in this context high-order method and another based on low-order methods representative of those in common use in industry. The two codes have been validated with solutions of the BiGlobal EVP and it has been showed that small errors in the base flow do not have affect significantly the results. As a result, a three-dimensional compressible unsteady second-order code for global linear stability has been successfully developed based on finite-volume spatial discretization and time-stepping method with the ability to study complex geometries by means of unstructured and hybrid meshes
机译:介绍了结合时间步长方法的全局不稳定性分析代码的开发,该方法应用于标准空气动力学代码中使用的BiGlobal和TriGlobal不稳定分析1、2和基于有限体积的空间离散化。时间步进方法相对于矩阵公式化方法的主要优势在于,前者为与后者方法相关的计算机存储问题提供了解决方案。迄今为止,这两种方法都已成功用于分析复杂几何形状的不稳定性,尽管它们的相对优势尚未被量化。当前工作的最终目标是在工业上通常使用的空间离散化方案的背景下解决这个问题。 Chiba 3的时间步进方法已与两种直接数值模拟算法结合起来实施,一种基于这种情况下通常使用的高阶方法,另一种基于代表行业常用方法的低阶方法。 。这两个代码已通过BiGlobal EVP的解决方案进行了验证,结果表明,基本流量中的小错误对结果没有显着影响。结果,基于有限体积空间离散化和时间步长方法,已经成功开发了用于全局线性稳定性的三维可压缩非定常二阶代码,并能够通过非结构化和混合网格研究复杂的几何形状

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号