首页> 外文OA文献 >Background foreground segmentation with RGB-D Kinect data: An efficient combination of classifiers
【2h】

Background foreground segmentation with RGB-D Kinect data: An efficient combination of classifiers

机译:使用RGB-D Kinect数据进行背景前景分割:分类器的有效组合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Low cost RGB-D cameras such as the Microsoft’s Kinect or the Asus’s Xtion Pro are completely changing the computer vision world, as they are being successfully used in several applications and research areas. Depth data are particularly attractive and suitable for applications based on moving objects detection through foreground/background segmentation approaches; the RGB-D applications proposed in literature employ, in general, state of the art foreground/background segmentation techniques based on the depth information without taking into account the color information. The novel approach that we propose is based on a combination of classifiers that allows improving background subtraction accuracy with respect to state of the art algorithms by jointly considering color and depth data. In particular, the combination of classifiers is based on a weighted average that allows to adaptively modifying the support of each classifier in the ensemble by considering foreground detections in the previous frames and the depth and color edges. In this way, it is possible to reduce false detections due to critical issues that can not be tackled by the individual classifiers such as: shadows and illumination changes, color and depth camouflage, moved background objects and noisy depth measurements. Moreover, we propose, for the best of the author’s knowledge, the first publicly available RGB-D benchmark dataset with hand-labeled ground truth of several challenging scenarios to test background/foreground segmentation algorithms.
机译:低成本的RGB-D相机(例如Microsoft的Kinect或华硕的Xtion Pro)正在彻底改变计算机视觉世界,因为它们已成功应用于多个应用和研究领域。深度数据特别有吸引力,并且适合基于通过前景/背景分割方法检测运动对象的应用;通常,文献中提出的RGB-D应用程序采用基于深度信息的最先进的前景/背景分割技术,而不考虑颜色信息。我们提出的新颖方法基于分类器的组合,该分类器可通过共同考虑颜色和深度数据来提高有关现有技术算法的背景扣除精度。特别地,分类器的组合基于加权平均值,该加权平均值允许通过考虑先前帧中的前景检测以及深度和颜色边缘来自适应地修改集合中每个分类器的支持。这样,可以减少由于关键问题而无法通过各个分类器解决的错误检测,例如,阴影和照明变化,颜色和深度伪装,移动的背景物体以及嘈杂的深度测量。此外,据作者所知,我们建议使用第一个可公开获得的RGB-D基准数据集,该数据集具有几种具有挑战性的场景的人工标记的地面真相,以测试背景/前景分割算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号