首页> 外文OA文献 >An Empirical Comparison of Graph-based Dimensionality Reduction Algorithms on Facial Expression Recognition Tasks
【2h】

An Empirical Comparison of Graph-based Dimensionality Reduction Algorithms on Facial Expression Recognition Tasks

机译:基于图的降维算法在面部表情识别任务上的经验比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Facial expression recognition is a topic of interest both in industry and academia. Recent approaches to facial expression recognition are based on mapping expressions to low dimensional manifolds. In this paper we revisit various dimensionality reduction algorithms using a graph-based paradigm. We compare eight dimensionality reduction algorithms on a facial expression recognition task. For this task, experimental results show that although Linear Discriminant Analysis (LDA)is the simplest and oldest supervised approach, its results are comparable to more flexible recent algorithms.LDA, on the other hand, is much simpler to tune, since it only depends on one parameter.
机译:面部表情识别是工业界和学术界都感兴趣的话题。面部表情识别的最新方法基于将表情映射到低维流形。在本文中,我们使用基于图的范式重新审视各种降维算法。我们在面部表情识别任务上比较了八维降维算法。对于此任务,实验结果表明,尽管线性判别分析(LDA)是最简单,最古老的监督方法,但其结果可与更灵活的最新算法相提并论。另一方面,LDA的调整要简单得多,因为它仅取决于在一个参数上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号