首页> 外文OA文献 >Enhanced integral equation analysis of multilayered periodic structures useful for the design of reflectarray antennas
【2h】

Enhanced integral equation analysis of multilayered periodic structures useful for the design of reflectarray antennas

机译:多层周期结构的增强积分方程分析,可用于设计反射阵列天线

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When reflectarray antennas are designed under the local periodicity assumption, the problem of the scattering of plane waves by multilayered pe- riodic structures has to be solved many times. The Method of oments (MoM) in the spectral domain is the numerical technique usually employed for the analysis of these multilayered structures. Unfortu- nately, it is not computationally efficient since it requires the determination of slowly convergent dou- ble infinite summations. In this paper the Mixed Potential Integral Equation (MPIE) formulation of the MoM in the spatial domain is invoked to transform the slowly convergent summations into singular finite double integrals that can be efficiently computed. The novel MoM approach in the spatial do- main has been found to be between one and two orders of magnitude faster than the traditional spectral domain MoM both in the analysis of multilay- ered periodic structures, and in the design of reflecflectarray antennas with cell characterization based on the local periodicity assumption.
机译:当在局部周期性假设下设计反射阵列天线时,多层周期性结构对平面波的散射问题必须解决很多次。光谱域中的矩量法(MoM)是通常用于分析这些多层结构的数值技术。不幸的是,由于需要确定缓慢收敛的双重无限和,因此它的计算效率不高。在本文中,在空间域中使用MoM的混合势积分方程(MPIE)公式将缓慢收敛的总和转换为可以有效计算的奇异有限双积分。在多层周期结构的分析以及具有小区特征的反射阵列天线的设计中,已经发现空间域中的新型MoM方法比传统的频谱域MoM快一到两个数量级。基于本地周期性假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号