Transmit beamforming is a technique used in MIMO systems to increase diversity in the communication. We consider a broadcast scenario (downlink) with several antennas at the transmitter and one antenna at each receiver. In this masterthesis we propose techniques that determine power allocation and beamformers in an OFDM scenario.ududIn Chapter 2 we make the scenario description and present some previous works in the single channel case. We describe two optimal transmit beamforming algorithms, and present one solution for the cognitive radio case.ududIn Chapter 3 we introduce the problematic of the OFDM optimization and justify the motivation behind it. We explain the interest in developing algorithms that allocate resources in a femtocell and consider the cognitive radio case. Within this scope we formulate two different approaches to our problem: one considers power minimization while having specific constraints on every subcarrier of each user, and the second minimizes power while considering only one constraint per user.ududIn Chapter 4 we develop two algorithms that suboptimally solve the problem with specific constraints on every subcarrier. For feedback signaling reasons, the users are imposed to use a single beamformer for all their subcarriers. Again, one of these solutions is extended to the cognitive radio case.ududIn Chapter 5 we propose a new algorithm that converges towards a feasible solution in the case we use Exponential Effective SINR Mapping (EESM) constraints on every user. We also discuss its optimality and extend it again to the cognitive case.ududFinally, in Chapter 6 we present some simulations and results for these algorithms.
展开▼
机译:发射波束成形是在MIMO系统中用于增加通信分集的技术。我们考虑一种广播场景(下行链路),在发射机处有多个天线,在每个接收机处有一个天线。在本专业知识中,我们提出了确定OFDM方案中的功率分配和波束形成器的技术。 ud ud在第二章中,我们进行了方案描述并介绍了单信道情况下的一些先前工作。我们描述了两种最佳的发射波束成形算法,并提出了一种针对认知无线电案例的解决方案。 ud ud在第3章中,我们将介绍OFDM优化的问题,并说明其背后的动机。我们解释了开发在飞蜂窝中分配资源并考虑认知无线电情况的算法的兴趣。在此范围内,我们提出了两种解决问题的方法:一种在考虑对功率最小化的同时对每个用户的每个子载波都有特定的约束,第二种考虑对功率进行最小化,而每个用户仅考虑一种约束。 ud ud在第4章中,我们开发了两种算法在每个子载波上都有特定的约束,不能很好地解决问题。出于反馈信令的原因,要求用户将单个波束成形器用于其所有子载波。再次,这些解决方案之一扩展到认知无线电案例。 ud ud在第5章中,我们提出了一种新算法,该算法在我们对每个用户使用指数有效SINR映射(EESM)约束的情况下,会收敛到可行的解决方案。 ud ud最后,在第6章中,我们介绍了这些算法的一些仿真和结果。
展开▼