首页> 外文OA文献 >Use of artificial neural networks for prediction of convective heat transfer in evaporative units
【2h】

Use of artificial neural networks for prediction of convective heat transfer in evaporative units

机译:使用人工神经网络预测蒸发单元中的对流传热

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Convective heat transfer prediction of evaporative processes is more complicatedudthan the heat transfer prediction of single-phase convective processes. This is due to the fact that physical phenomena involved in evaporative processes are very complex and vary with the vapor quality that increases gradually as more fluid is evaporated. Power-law correlations used for prediction of evaporative convection have proved little accuracy when used in practical cases. In this investigation, neural-network-based models have been used as a tool for prediction of the thermal performance of evaporative units. For this purpose, experimental data were obtained in a facility that includes a counter-flow concentric pipes heat exchanger with R134a refrigerant flowing inside the circularudsection and temperature controlled warm water moving through the annularudsection. This work also included the construction of an inverse Rankine refrigerationudcycle that was equipped with measurement devices, sensors and a dataudacquisition system to collect the experimental measurements under differentudoperating conditions. Part of the data were used to train several neural-networkudconfigurations. The best neural-network model was then used for predictionudpurposes and the results obtained were compared with experimental data notudused for training purposes. The results obtained in this investigation reveal theudconvenience of using artificial neural networks as accurate predictive tools foruddetermining convective heat transfer rates of evaporative processes.
机译:蒸发过程的对流传热预测要比单相对流过程的传热预测复杂。这是由于以下事实:与蒸发过程有关的物理现象非常复杂,并且随着蒸汽质量的变化而变化,随着更多流体的蒸发,蒸汽质量逐渐提高。在实际情况下,用于预测蒸发对流的幂律相关性已证明精度不高。在这项研究中,基于神经网络的模型已用作预测蒸发单元热性能的工具。为此,在一个设备中获得了实验数据,该设备包括一个逆流同心管换热器,其中R134a制冷剂在圆孔内流动,温度受控的热水流过圆孔。这项工作还包括构造逆朗肯制冷/循环系统,该逆循环制冷/循环系统配备了测量设备,传感器和数据数据采集系统,以收集在不同 uperpering条件下的实验测量值。部分数据用于训练几种神经网络 udconfiguration。然后将最佳的神经网络模型用于预测目的,并将获得的结果与未用于训练目的的实验数据进行比较。在这项研究中获得的结果揭示了使用人工神经网络作为确定蒸发过程的对流传热速率的准确预测工具的不便之处。

著录项

  • 作者

    Pacheco-Vega Arturo;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号