首页> 外文OA文献 >Conditional network measures using multivariate partial coherence analysis for spike train data with application to multi-electrode array recordings
【2h】

Conditional network measures using multivariate partial coherence analysis for spike train data with application to multi-electrode array recordings

机译:使用多变量部分相干分析的条件网络量度用于尖峰序列数据并应用于多电极阵列记录

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis proposes a novel approach for functional connectivity studies of neuronal signal recordings based on statistical signal processing analysis in the frequency domain using Multivariate Partial Coherence (MVPC) combined with network theory measures. MVPC is applied to spike trains signals to make inferences about the underlying network structure. The presence of connections between single unit spike trains is estimated using both coherence and MVPC analysis. Scalability of MVPC analysis is investigated through application to simulated spike train data with up to 100 simultaneous spike trains generated from a network of excitatory and inhibitory cortical neurons. Stable MVPC estimates were obtained with up to 198 predictors in partial coherence estimates, using a combination of simulated cortical neuron data and additional Poisson spike train predictors. MVPC provides higher order partial coherence analysis for multi-channel spike trains signals, removing effects of common influences in pairwise connectivity estimates. Network measures applied to binary and weighted adjacency measures derived from coherence and partial coherence are compared to determine the differences in unconditional and conditional networks of spike train interactions. A combination of MVPC analysis along with network theory analysis provides a systematic approach for multi-channel spike train signals. The proposed method is applied to simulated and multi-electrode array (MEA) spike train data. The MEA data consists of 19 single unit channels recorded from a study of connectivity in a model of kainic acid (KA) induced epileptiform activity for mesial temporal lobe epilepsy (mTLE) in a rat. The network theory analysis uses basic measures on both conditional and unconditional network, which highlights the differences in network structure and characteristics between the two representations. Complex analysis on conditional networks is useful in describing the properties of integration and segregation in the network.
机译:本文提出了一种新的方法,用于神经元信号记录的功能连通性研究,该方法基于频域上的统计信号处理分析,使用多变量部分相干(MVPC)结合网络理论方法。 MVPC被应用于尖峰信号,以推断出底层网络结构。使用相干性和MVPC分析来估算单个单元峰值序列之间的连接。 MVPC分析的可扩展性是通过将模拟兴奋序列数据应用到由兴奋性和抑制性皮层神经元网络生成的多达100个同时发生的穗序列来研究的。使用模拟皮层神经元数据和其他Poisson峰值训练预测器的组合,使用部分相干估计中的多达198个预测器获得了稳定的MVPC估计。 MVPC为多通道尖峰信号提供了更高阶的部分相干分析,从而消除了成对连接估计中常见影响的影响。比较应用于相干性和部分相干性的二元加权加权度量的网络度量,以确定峰值列车交互的无条件和有条件网络中的差异。 MVPC分析与网络理论分析的结合为多通道尖峰信号提供了一种系统的方法。该方法被应用于模拟和多电极阵列(MEA)尖峰序列数据。 MEA数据由19个单一单位通道组成,这些通道是在海藻酸(KA)诱导的大鼠颞中叶癫痫(mTLE)癫痫样活动模型中的连通性研究中记录的。网络理论分析对条件网络和无条件网络都使用了基本度量,这突出了两种表示形式在网络结构和特征上的差异。对条件网络进行复杂分析对于描述网络中集成和隔离的属性很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号