首页> 外文OA文献 >Analytic Properties of Potts and Ising Model Partition Functions and the Relationship between Analytic Properties and Phase Transitions in Equilibrium Statistical Mechanics
【2h】

Analytic Properties of Potts and Ising Model Partition Functions and the Relationship between Analytic Properties and Phase Transitions in Equilibrium Statistical Mechanics

机译:平衡统计力学中Potts和Ising模型分区函数的解析性质以及解析性质和相变之间的关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Ising and $Q$-state Potts models are statistical mechanical models of spins interaction on crystal lattices.udWe study the partition functions on a range of lattices, particularly two- and three-dimensional cases. The study aims to investigate cooperative phenomena $-$ how higher level structure is affected by the detailed activity of a very large number of lower level structures.udWe investigate the analytic properties of the partition functions and their relationship to physical observables in equilibrium near phase transition.udOur study is focussed on describing the partition function and the distribution of zeros of the partition function in the complex-temperature plane close to phase transitions.udHere we first consider the solved case of the Ising model on square lattice as a benchmark for checking our method of computation and analysis.udThe partition function is computed using a transfer matrix approach and the zeros are found numerically by Newton-Raphson method.udWe extend the study of $Q$-state Potts models to a more general case called the $Z_Q$-symmetric model.udWe evidence the existence of multiple phase transitions for this model in case $Q=5,6,$ and discuss the possible connection to different stages of disordered state.udGiven sufficient and efficient coding and computing resources, we extend many previously studied cases to larger lattice sizes.udOur analysis of zeros distribution close to phase transition point is based on a certain power law relation which leads to critical exponent of physical observable.udWe evidence for example, that our method can be used to give numerical estimates of the specific heat critical exponent $lpha$.
机译:Ising状态和$ Q $状态的Potts模型是晶格上自旋相互作用的统计力学模型。 ud我们研究了一系列晶格上的分配函数,尤其是二维和三维情况。这项研究旨在研究合作现象$-$大量低层结构的详细活动如何影响高层结构。 ud我们研究分配函数的解析性质以及它们在平衡近相中与物理可观测量的关系 ud我们的研究重点是描述复数温度平面中接近相变的分区函数和分区函数零的分布。 ud我们首先以方格上的Ising模型的求解情况作为基准用于检查我们的计算和分析方法。 ud使用转移矩阵方法计算分区函数,并通过Newton-Raphson方法在数值上找到零。 ud我们将对$ Q $状态的Potts模型的研究扩展到更一般的情况 ud我们证明在$ Q = 5,6,$的情况下该模型存在多个相变,并讨论了可能的c ud鉴于充足而有效的编码和计算资源,我们将许多先前研究的情况扩展到了较大的晶格尺寸。 ud我们对相变点附近的零点分布的分析是基于某种幂律关系而得出的 ud例如,我们的证据表明,我们的方法可以用于提供比热临界指数$ alpha $的数值估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号