首页> 外文OA文献 >Intelligent sliding mode control in flexible structures
【2h】

Intelligent sliding mode control in flexible structures

机译:柔性结构中的智能滑模控制

摘要

The first objective of this work is to develop an intelligent sliding mode controller for vibration control in flexible structures. The proposed control consists of two processes: system identification and sliding mode control. System identification is performed based on a neural fuzzy (NF) approximator. A novel extended gradient method and a modified least square estimate (LSE) algorithm are proposed for neuro-fuzzy system training. The training is performed in a hybrid approach: the nonlinear parameters in the NF approximator are updated using the extended gradient method while the linear parameters are optimized by the modified LSE. In system control, an enhanced sliding mode (ESM) control system is developed to promote the control effort for active vibration suppression especially in flexible structures. Based on experimental investigation, when the principle of the terminal attractor is used in the classical gradient descent algorithm or sliding mode control systems, it causes implementation problems because the initial condition should be nonzero. The proposed training techniques provide faster convergence while avoiding the associated implementation problems. The stability of the proposed training techniques is demonstrated by the Lyapunov analysis. The effectiveness of the developed techniques is verified experimentally with a flexible structure experimental setup. Test results show that the suggested hybrid training technique can effectively improve the convergence of the NF approximator; the ESM controller can efficiently perform vibration suppression in flexible structures and easy to implement. The commonly used global search method is genetic algorithm (GA). The problems in the classical GA are low convergence speed and lack of fast global search capability for complex search space. The second objective of this work is to develop a more efficient global training approach, called enhanced genetic algorithm (EGA) for system training and optimization applications. Two approaches are proposed: Firstly, a novel group-based branch crossover operator is suggested to thoroughly explore local space and speed up convergence. Secondly, an enhanced MPT (Makinen-Periaux-Toivanen) mutation operator is proposed to promote global search capability for complex search space. The effectiveness of the developed EGA is verified by simulations based on a series of benchmark test problems. Test results show that the branch crossover operator and enhanced MPT mutation operator can effectively improve the convergence speed and global search capability. The EGA technique outperforms other related GA methods with respect to global search efficiency and operation efficiency.
机译:这项工作的首要目标是开发一种用于柔性结构振动控制的智能滑模控制器。所提出的控制包括两个过程:系统识别和滑模控制。系统识别是基于神经模糊(NF)近似器执行的。提出了一种新颖的扩展梯度方法和改进的最小二乘估计(LSE)算法,用于神经模糊系统的训练。训练以混合方法执行:使用扩展梯度法更新NF逼近器中的非线性参数,而通过修改后的LSE优化线性参数。在系统控制中,开发了增强的滑模(ESM)控制系统,以促进主动抑制振动的控制工作,特别是在柔性结构中。根据实验研究,在经典梯度下降算法或滑模控制系统中使用末端吸引子原理时,由于初始条件应为非零,因此会引起实现问题。所提出的训练技术提供了更快的收敛性,同时避免了相关的实现问题。 Lyapunov分析证明了所提出训练技术的稳定性。通过灵活的结构实验设置,通过实验验证了开发技术的有效性。测试结果表明,提出的混合训练技术可以有效地提高NF逼近器的收敛性。 ESM控制器可以在柔性结构中有效地执行振动抑制,并且易于实现。常用的全局搜索方法是遗传算法(GA)。传统遗传算法的问题是收敛速度低,并且对于复杂的搜索空间缺乏快速的全局搜索能力。这项工作的第二个目标是开发一种更有效的全局训练方法,称为增强遗传算法(EGA),用于系统训练和优化应用程序。提出了两种方法:首先,提出一种新颖的基于组的分支交叉算子,以彻底探索局部空间并加速收敛。其次,提出了一种增强的MPT(Makinen-Periaux-Toivanen)变异算子,以提升复杂搜索空间的全局搜索能力。基于一系列基准测试问题的仿真验证了开发的EGA的有效性。测试结果表明,分支交叉算子和增强型MPT变异算子可以有效提高收敛速度和全局搜索能力。就全局搜索效率和运营效率而言,EGA技术优于其他相关的GA方法。

著录项

  • 作者

    Li Dezhi;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号