首页> 外文OA文献 >Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface
【2h】

Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface

机译:液-汽界面上链分子缩合/蒸发系数的分子动力学研究

摘要

The structure and thermodynamic properties of the liquid–vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid–vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid–vapor interface. In this study, MD simulations were performedto study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane,octane, and dodecane, at the liquid–vapor interface, and the effects of the molecular orientationand chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energyand the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid–vapor interface was disordered when the surface temperature was sufficientlyhigher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.
机译:液-气界面的结构和热力学性质对许多技术意义都至关重要。对于简单的分子,例如氩气和水,分子的凝结/蒸发行为在很大程度上取决于其平移运动和系统温度。现有的分子动力学(MD)结果与基于液体-蒸汽界面附近的液体和蒸汽状态是各向同性的假设的理论预测是一致的。另外,已经发现长链分子例如十二烷具有相似的分子缩合/蒸发特性。然而,尚不清楚各向同性假设是否有效,以及分子的分子取向或链长是否会影响液-气界面处的冷凝/蒸发行为。在这项研究中,进行了MD模拟以研究直链烷烃(丁烷,辛烷和十二烷)在液-汽界面的分子缩合/蒸发行为,并研究了分子取向和链长的影响。平衡系统。结果表明,链分子的缩合/蒸发行为主要取决于分子的翻译能和表面温度,并且与分子链的长度无关。此外,当表面温度足够高于三相点时,液-气界面处的取向就会紊乱,并且对分子的缩合/蒸发行为没有显着影响。各向同性假设的有效性得到了证实,并且我们得出结论,即使对于链分子,凝结/蒸发系数也可以通过液汽平移长度比来预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号