首页> 外文OA文献 >The use of reduced-moderation light water reactors for transuranic isotope burning in thorium fuel
【2h】

The use of reduced-moderation light water reactors for transuranic isotope burning in thorium fuel

机译:减缓轻水反应堆在or燃料中超铀同位素燃烧中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Light water reactors (LWRs) are the world’s dominant nuclear reactor system. Uranium (U)-fuelled LWRs produce long-lived transuranic (TRU) isotopes. TRUs can be recycled in LWRs or fast reactors. The thermal neutron spectrum in LWRs is less suitable for burning TRUs as this causes a build-up of TRU isotopes with low fission probability. This increases the fissile feed requirements, which tends to result in a positive void coefficient (VC) and hence the reactor is unsafe to operate. Use of reduced-moderation LWRs can improve TRU transmutation performance, but the VC is still severely limiting for these designs. Reduced-moderation pressurized water reactors (RMPWRs) and boiling water reactors (RBWRs) are considered in this study. Using thorium (Th) instead of U as the fertile fuel component can greatly improve the VC. However, Th-based transmutation is a much less developed technology than U-based transmutation. In this thesis, the feasibility and fuel cycle performance of full TRU recycle in Th-fuelled RMPWRs and RBWRs are evaluated. Neutronic performance is greatly improved by spatial separation of TRU and 233-6U, primarily implemented here using heterogeneous RMPWR and RBWR assembly designs.In a RMPWR, the water to fuel ratio must be reduced to around 50% of the normal value to allow full actinide recycle. If implemented by retrofitting an existing PWR, steady-state thermal-hydraulic constraints can still be satisfied. However, in a large break loss-of-coolant accident, the emergency core cooling system may not be able to provide water to the core quickly enough to prevent fuel cladding failure. A discharge burn-up of ~40 GWd/t is possible in RMPWRs. Reactivity control is a challenge due to the reduced worth of neutron absorbers in the hard neutron spectrum, and their detrimental effect on the VC, especially when diluted, as for soluble boron. Control rods are instead used to control the core. It appears possible to achieve adequate power peaking, shutdown margin and rod-ejection accident response.In RBWRs, it appears neutronically feasible to achieve very high burn-ups (~120 GWd/t) but the maximum achievable incineration rate is less than in RMPWRs. The reprocessing and fuel fabrication requirements of RBWRs are less than RMPWRs but more than fast reactors. A two-stage TRU burning cycle, where the first stage is Th-Pu MOX in a conventional PWR feeding a second stage continuous burn in a RBWR, is technically reasonable. It is possible to limit the core area to that of an ABWR with acceptable thermal-hydraulic performance. In this case, it appears that RBWRs are of similar cost to inert matrix incineration in LWRs, and lower cost than RMPWRs and Th- and U-based fast reactor recycle schemes.
机译:轻水反应堆(LWR)是世界上主要的核反应堆系统。铀(U)燃料驱动的轻水堆产生长寿命的超铀(TRU)同位素。 TRU可以在轻水堆或快速反应堆中回收。轻水堆中的热中子谱不太适合燃烧TRU,因为这会导致TRU同位素以低裂变概率堆积。这增加了裂变原料的需求,这倾向于导致正的空隙系数(VC),因此反应器是不安全的。使用减慢度的LWR可以提高TRU转换性能,但是VC仍然严重限制了这些设计。在这项研究中考虑了减温压水堆(RMPWR)和沸水堆(RBWR)。使用th(Th)代替U作为可肥燃料成分可以大大提高VC。然而,基于Th的trans变比基于U的trans变技术开发程度低。本文评估了Th型RMPWR和RBWR中完全TRU循环的可行性和燃料循环性能。通过将TRU和233-6U进行空间分隔,可大大提高中子学性能,此处主要使用异类RMPWR和RBWR组件设计实现。在RMPWR中,水/燃料比必须降低至正常值的50%左右,以使act系元素全回收。如果通过改造现有的压水堆实现,仍然可以满足稳态的热工约束。但是,在大的冷却液中断损失事故中,应急堆芯冷却系统可能无法足够快地向堆芯供水,以防止燃料包壳失效。 RMPWR中的放电燃尽可能约为40 GWd / t。由于硬中子谱中的中子吸收剂的价值降低,并且对VC的有害影响(尤其是稀释后的可溶性硼),反应性控制是一个挑战。相反,控制杆用于控制堆芯。在RBWR中,似乎有可能实现足够的功率峰值,停机裕度和棒料喷射事故响应。在RBWR中,实现非常高的燃尽率(〜120 GWd / t)在中子学上似乎可行,但可达到的最大焚化率低于RMPWR 。 RBWR的后处理和燃料制造要求低于RMPWR,但高于快速反应堆。从技术上讲,采用两阶段的TRU燃烧循环是可行的,其中第一阶段为常规PWR中的Th-Pu MOX,第二阶段为RBWR中的连续燃烧。可以将核心面积限制为具有可接受的热液压性能的ABWR。在这种情况下,似乎RBWR的成本与LWR中惰性基质焚烧的成本相近,并且成本比RMPWR和基于Th和U的快速反应器再循环方案低。

著录项

  • 作者

    Lindley Benjamin A.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号