首页> 外文OA文献 >Extraction and optimization of B-spline PBD templates for recognition of connected handwritten digit strings
【2h】

Extraction and optimization of B-spline PBD templates for recognition of connected handwritten digit strings

机译:B样条PBD模板的提取和优化,用于识别连接的手写数字字符串

摘要

Recognition of connected handwritten digit strings is a challenging task due mainly to two problems: poor character segmentation and unreliable isolated character recognition. In this paper, we first present a rational B-spline representation of digit templates based on Pixel-to-boundary Distance (PBD) maps. We then present a neural network approach to extract B-spline PBD templates and an evolutionary algorithm to optimize these templates. In total, 1,000 templates (100 templates for each of 10 classes) were extracted from and optimized on 10,426 training samples from the NIST Special Database 3. By using these templates, a nearest neighbor classifier can successfully reject 90.7 percent of nondigit patterns while achieving a 96.4 percent correct classification of isolated test digits. When our classifier is applied to the recognition of 4,958 connected handwritten digit strings (4,555 2-digit, 355 3-digit, and 48 4-digit strings) from the NIST Special Database 3 with a dynamic programming approach, it has a correct classification rate of 82.4 percent with a rejection rate of as low as 0.85 percent. Our classifier compares favorably in terms of correct classification rate and robustness with other classifiers that are tested.
机译:主要由于两个问题,识别连接的手写数字字符串是一项艰巨的任务:较差的字符分割和不可靠的孤立字符识别。在本文中,我们首先提出基于像素到边界距离(PBD)映射的数字模板的有理B样条表示。然后,我们提出了一种神经网络方法来提取B样条PBD模板,以及一种进化算法来优化这些模板。总共从NIST特殊数据库3的10,426个训练样本中提取并优化了1,000个模板(每10个类别100个模板)并对其进行了优化。通过使用这些模板,最近的邻居分类器可以成功拒绝90.7%的非数字模式,同时实现96.4%的隔离测试数字正确分类。当我们的分类器通过动态编程方法从NIST Special Database 3应用于识别4,958个相连的手写数字字符串(4,555个2位数字,355个3位数字和48个4位数字字符串)时,它具有正确的分类率为82.4%,拒绝率低至0.85%。我们的分类器与其他经过测试的分类器相比,在正确的分类率和鲁棒性方面具有优势。

著录项

  • 作者

    Lu Z; Chi ZG; Siu WC;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号