首页> 外文OA文献 >Improvement in cavitation erosion resistance of a copper-based propeller alloy by laser surface melting
【2h】

Improvement in cavitation erosion resistance of a copper-based propeller alloy by laser surface melting

机译:通过激光表面熔化改善铜基螺旋桨合金的抗空蚀性

摘要

Laser surface melting (LSM) of manganese-nickel-aluminium bronze (MAB), a common marine propeller alloy, was performed with the aim of improving the cavitation erosion resistance. Melting was achieved using a 2-kW continuous wave Nd:YAG laser with different scanning speeds and beam diameters, yielding different values of laser fluence. LSM resulted in a melt layer with a thickness of a few hundred micrometer thick, with the microhardness value at the surface increased to more than twice that of as-received MAB. The microstructure of the melt layer is highly refined and homogenized and has a single-phase b.c.c. structure (β phase), in contrast to the complex and heterogeneous microstructure of as-received MAB. With optimum laser parameters (power=1 kW; scanning velocity=35 mm/s; spot diameter=2 mm), the cavitation erosion resistance in 3.5 wt.% NaCl solution was improved by 5.8 and 2.2 times compared with that of as-received MAB and nickel-aluminium bronze (NAB), respectively. The improvement in cavitation erosion resistance is attributable to increased hardness and also to a much more homogeneous microstructure. Detailed analysis of the evolution of the morphology of the cavitated surface by SEM revealed totally different damage mechanisms for untreated and laser surface-melted MAB. For untreated MAB, the cavitation attack started at the κI phase, followed by an attack at the α/β phase boundary during the initial stage and eventually developed into ductile tearing of the matrix. However, the laser surface-melted samples only exhibited slight grain boundary attack at the initial stage, being initiating from triple junctions. In addition, the damaged surface of the laser-treated samples showed fracture of a more brittle nature.
机译:为了提高耐空蚀性,对锰-镍-铝青铜(MAB)(一种常见的船用螺旋桨合金)进行了激光表面熔化(LSM)。使用具有不同扫描速度和光束直径的2 kW连续波Nd:YAG激光器实现熔化,产生不同的激光注量值。 LSM形成了厚度为几百微米厚的熔体层,表面的显微硬度值增加到了原来的MAB的两倍以上。熔体层的微观结构高度细化和均质化,并具有单相b.c.c。的结构(β相),与收到的MAB的复杂且异质的微观结构相反。在最佳的激光参数下(功率= 1 kW;扫描速度= 35 mm / s;光斑直径= 2 mm),与原来相比,在3.5 wt。%NaCl溶液中的抗气蚀性能提高了5.8和2.2倍。 MAB和镍铝青铜(NAB)分别。抗气蚀性能的提高归因于硬度的增加以及更均匀的微观结构。通过SEM对空化表面形态演变的详细分析显示,未处理和激光表面熔化的MAB的破坏机理完全不同。对于未经处理的MAB,空化攻击始于κI相,然后在初始阶段开始攻击于α/β相界,并最终发展为基体的韧性撕裂。然而,激光表面熔化的样品在初始阶段仅表现出轻微的晶界侵蚀,这是由三重结引发的。另外,经激光处理的样品的受损表面显示出更脆性的断裂。

著录项

  • 作者

    Tang CH; Cheng FT; Man HC;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号