首页> 外文OA文献 >Vortical flow and mixing in rotating milli- and micro-chambers
【2h】

Vortical flow and mixing in rotating milli- and micro-chambers

机译:旋转的微型腔室和微型腔室中的涡流和混合

摘要

The complex flow in rotating milli- and micro-chambers, with wide applications in bio-MEMS, has not been fully understood; and this forms the basis of our investigation. A time-and-grid size validated numerical model has been developed to study the fluid mechanics and mass transfer of mixing by the vortical flow being induced from continuously transient angular acceleration-deceleration of the chamber. A primary vortex, responsible for mixing fluids in the radial-circumferential planes of the chamber, is generated from the inertial effect with the temporal change of vorticity directed opposite to that of the rotating chamber. This dominant vortex has been confirmed by an analytical approach assuming quasi-equilibrium under constant acceleration-deceleration. In addition, a pair of toroidal vortices, responsible for mixing fluids in the radial-axial planes of the chamber, is generated from the Coriolis acceleration acting on the fluid motion from the primary vortex. The resultant three-dimensional (3D) spiral toroidal vortex (STV) provides effective momentum and mass transfer in the chamber. Different transient rotation speed schemes have been used to realize the continuous acceleration-deceleration; and the most effective scheme is the linear change of angular speed over time with chamber accelerating linearly to maximum rotation speed ΩM, and subsequently decelerating linearly to zero speed in a total time duration of 2δ. t. Experiments and simulations demonstrate that more effective mixing with smaller specific mixing time (SMT), attributed to higher vorticity and lower viscous friction, can be obtained from higher angular acceleration/deceleration and with large chamber (longer radial extent, taller height, and wider angular span). A similitude study on both numerical and experimental data using the dimensionless groups obtained from the Buckingham-π analysis reveals that an empirical scale-up law can be developed with the dimensionless mixing time τ/(ro2/υ) being well correlated with the driving potential Φ which is made up of the five dimensionless variables, ratio of transient acceleration time of chamber to momentum diffusion time δt/(ro2/υ), rotational Reynolds number ReR=ro2ΩM/ν, ratio of half height to outer radius h/. ro, ratio of inner to outer radius ri/. ro, and angular span θ of the rotating chamber. Higher Φ is required to create sufficiently high vorticity overcoming increasing viscous resistance offered from the top, bottom, radial and end walls of the milli- and micro-chamber so that effective mixing can be achieved.
机译:尚未完全了解旋转毫腔室和微腔室中的复杂流动,以及在生物MEMS中的广泛应用。这构成了我们调查的基础。已经开发了时间和网格尺寸验证的数值模型,以研究由腔室连续瞬态角加速度-减速引起的涡流引起的混合流体力学和传质。主惯性涡流是由惯性效应产生的,该主涡流是在腔室的径向周向平面内混合流体的,其涡度的时间变化与旋转腔相反。该主导涡已通过假设恒定加速度-减速下的准平衡的分析方法得到确认。另外,由作用于来自初级涡旋的流体运动的科里奥利加速度产生了一对负责在腔室的径向轴向平面中混合流体的环形涡旋。产生的三维(3D)螺旋环形涡流(STV)在室内提供有效的动量和质量传递。已经采用了不同的瞬时转速方案来实现连续的加减速。最有效的方案是角速度随时间线性变化,腔室线性加速到最大转速ΩM,随后在总持续时间2δ内线性减速到零速度。 t。实验和模拟表明,较高的角加速度/减速度和较大的腔室(较长的径向范围,较高的高度和较宽的角度)可通过较高的涡度和较低的粘滞摩擦获得更有效的混合,且混合时间较短(SMT)较小跨度)。使用从白金汉-π分析获得的无量纲组对数值和实验数据进行的相似性研究表明,可以建立经验的放大定律,使无量纲的混合时间τ/(ro2 /υ)与驱动潜力充分相关Φ由五个无因次变量组成:腔室的瞬时加速时间与动量扩散时间δt/(ro2 /υ)的比,旋转雷诺数ReR =ro2ΩM/ν,半高与外半径的比h /。 ro,内外半径之比ri /。 ro和旋转室的角度跨度θ。需要更高的Φ来产生足够高的涡旋性,以克服由微型腔室的顶部,底部,径向和端壁提供的增加的粘性阻力,从而可以实现有效的混合。

著录项

  • 作者

    Ren Y; Leung WWF;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号