首页> 外文OA文献 >Fuzzy approximate entropy analysis of chaotic and natural complex systems : detecting muscle fatigue using electromyography signals
【2h】

Fuzzy approximate entropy analysis of chaotic and natural complex systems : detecting muscle fatigue using electromyography signals

机译:混沌和自然复杂系统的模糊近似熵分析:使用肌电信号检测肌肉疲劳

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the present contribution, a complexity measure is proposed to assess surface electromyography (EMG) in the study of muscle fatigue during sustained, isometric muscle contractions. Approximate entropy (ApEn) is believed to provide quantitative information about the complexity of experimental data that is often corrupted with noise, short data length, and in many cases, has inherent dynamics that exhibit both deterministic and stochastic behaviors. We developed an improved ApEn measure, i.e., fuzzy approximate entropy (fApEn), which utilizes the fuzzy membership function to define the vectors’ similarity. Tests were conducted on independent, identically distributed (i.i.d.) Gaussian and uniform noises, a chirp signal, MIX processes, Rossler equation, and Henon map. Compared with the standard ApEn, the fApEn showed better monotonicity, relative consistency, and more robustness to noise when characterizing signals with different complexities. Performance analysis on experimental EMG signals demonstrated that the fApEn significantly decreased during the development of muscle fatigue, which is a similar trend to that of the mean frequency (MNF) of the EMG signal, while the standard ApEn failed to detect this change. Moreover, fApEn of EMG demonstrated a better robustness to the length of the analysis window in comparison with the MNF of EMG. The results suggest that the fApEn of an EMG signal may potentially become a new reliable method for muscle fatigue assessment and be applicable to other short noisy physiological signal analysis.
机译:在目前的贡献中,提出了一种复杂性措施来评估表面等速肌电图(EMG),以研究持续等距肌肉收缩过程中的肌肉疲劳。据信,近似熵(ApEn)可提供有关实验数据复杂性的定量信息,该实验数据通常会因噪声而损坏,数据长度较短,并且在许多情况下具有表现出确定性和随机性的固有动力学。我们开发了一种改进的ApEn度量,即模糊近似熵(fApEn),该度量利用模糊隶属函数定义矢量的相似性。测试是在独立的,均布的(i.i.d.)高斯和均匀噪声,线性调频信号,MIX过程,Rossler方程和Henon映射上进行的。与标准ApEn相比,fApEn在表征具有不同复杂度的信号时表现出更好的单调性,相对一致性和对噪声的更强健性。对实验肌电信号的性能分析表明,在肌肉疲劳发展过程中,fApEn明显降低,这与肌电信号的平均频率(MNF)相似,而标准ApEn未能检测到这种变化。此外,与EMG的MNF相比,EMG的fApEn对分析窗口的长度显示出更好的鲁棒性。结果表明,肌电信号的fApEn可能会成为一种新的可靠的肌肉疲劳评估方法,并适用于其他短噪声生理信号分析。

著录项

  • 作者

    Xie, HB; Guo, JY; Zheng, YP;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号