首页> 外文OA文献 >A new Jameson–Schmidt–Turkel Smooth Particle Hydrodynamics algorithm for large strain explicit fast dynamics
【2h】

A new Jameson–Schmidt–Turkel Smooth Particle Hydrodynamics algorithm for large strain explicit fast dynamics

机译:一种适用于大应变显式快速动力学的新型Jameson-Schmidt-Turkel光滑粒子流体动力学算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a new Smooth Particle Hydrodynamics (SPH) computational framework for large strain explicit solid dynamics. A mixed-based set of Total Lagrangian conservation laws (Bonet et al., 2015; Gil et al., 2016) is presented in terms of the linear momentum and an extended set of geometric strain measures, comprised of the deformation gradient, its co-factor and the Jacobian. Taking advantage of this representation, the main aim of this paper is the adaptation of the very efficient Jameson–Schmidt–Turkel (JST) algorithm (Jameson et al., 1981) extensively used in computational fluid dynamics, to a SPH based discretisation of the mixed-based set of conservation laws, with three key distinct novelties. First, a conservative JST-based SPH computational framework is presented with emphasis in nearly incompressible materials. Second, the suppression of numerical instabilities associated with the non-physical zero-energy modes is addressed through a well-established stabilisation procedure. Third, the use of a discrete angular momentum projection algorithm is presented in conjunction with a monolithic Total Variation Diminishing Runge–Kutta time integrator in order to guarantee the global conservation of angular momentum. For completeness, exact enforcement of essential boundary conditions is incorporated through the use of a Lagrange multiplier projection technique. A series of challenging numerical examples (e.g. in the near incompressibility regime) are examined in order to assess the robustness and accuracy of the proposed algorithm. The obtained results are benchmarked against a wide spectrum of alternative numerical strategies.
机译:本文提出了一种用于大应变显式固体动力学的新的光滑粒子流体动力学(SPH)计算框架。基于线性动量和一组扩展的几何应变量度(包括变形梯度,其协方差)构成了一套基于混合的总拉格朗日守恒律(Bonet等,2015; Gil等,2016)。因数和雅可比行列式。利用这种表示法,本文的主要目的是将广泛用于计算流体动力学的非常有效的Jameson-Schmidt-Turkel(JST)算法(Jameson等人,1981)应用于基于SPH的离散化。基于混合的一组保护法,具有三个关键的不同新颖性。首先,提出了一种基于JST的保守SPH计算框架,重点是在几乎不可压缩的材料中。其次,通过完善的稳定程序解决了与非物理零能量模式相关的数值不稳定性的抑制问题。第三,结合离散整体动量递减Runge-Kutta时间积分器,提出了离散角动量投影算法的使用,以保证角动量的整体守恒。为了完整起见,通过使用拉格朗日乘数投影技术来结合基本边界条件的精确实施。为了评估所提出算法的鲁棒性和准确性,研究了一系列具有挑战性的数值示例(例如在近不可压缩状态下)。所获得的结果以各种替代数值策略为基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号