首页> 外文OA文献 >Detecting cyber-physical threats in an autonomous robotic vehicle using Bayesian Networks
【2h】

Detecting cyber-physical threats in an autonomous robotic vehicle using Bayesian Networks

机译:使用贝叶斯网络检测自动驾驶机器人中的网络物理威胁

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Robotic vehicles and especially autonomous robotic vehicles can be attractive targets for attacks that cross the cyber-physical divide, that is cyber attacks or sensory channel attacks affecting the ability to navigate or complete a mission. Detection of such threats is typically limited to knowledge-based and vehicle-specific methods, which are applicable to only specific known attacks, or methods that require computation power that is prohibitive for resource-constrained vehicles. Here, we present a method based on Bayesian Networks that can not only tell whether an autonomous vehicle is under attack, but also whether the attack has originated from the cyber or the physical domain. We demonstrate the feasibility of the approach on an autonomous robotic vehicle built in accordance with the Generic Vehicle Architecture specification and equipped with a variety of popular communication and sensing technologies. The results of experiments involving command injection, rogue node and magnetic interference attacks show that the approach is promising.
机译:机器人车辆,尤其是自动驾驶机器人车辆可能成为跨越网络物理鸿沟的攻击的诱人目标,这些攻击是影响导航或完成任务能力的网络攻击或感官渠道攻击。对此类威胁的检测通常仅限于基于知识的和特定于车辆的方法,这些方法仅适用于特定的已知攻击,或要求计算能力禁止资源受限的车辆的方法。在这里,我们提出了一种基于贝叶斯网络的方法,该方法不仅可以判断自动驾驶车辆是否受到攻击,还可以判断攻击是否来自网络领域或物理领域。我们证明了这种方法在按照通用车辆架构规范制造,并配备了各种流行的通信和传感技术的自动驾驶机器人上的可行性。涉及命令注入,恶意节点和电磁干扰攻击的实验结果表明,该方法很有希望。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号