首页> 外文OA文献 >Accounting for Errors from Predicting Exposures in Environmental Epidemiology and Environmental Statistics
【2h】

Accounting for Errors from Predicting Exposures in Environmental Epidemiology and Environmental Statistics

机译:解释环境流行病学和环境统计中的预测接触误差

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

PLEASE NOTE THAT AN UPDATED VERSION OF THIS RESEARCH IS AVAILABLE AS WORKING PAPER 350 IN THE UNIVERSITY OF WASHINGTON BIOSTATISTICS WORKING PAPER SERIES (http://www.bepress.com/uwbiostat/paper350).In environmental epidemiology and related problems in environmental statistics, it is typically not practical to directly measure the exposure for each subject. Environmental monitoring is employed with a statistical model to assign exposures to individuals. The result is a form of exposure misspecification that can result in complicated errors in the health effect estimates if the exposure is naively treated as known. The exposure error is neither “classical” nor “Berkson”, so standard regression calibration methods do not apply. We decompose the health effect estimation error into three components. First, the standard errors are too small if the exposure field is correlated, independent of variability in estimating the exposure field parameters. Second, the standard errors are too small because they do not account for variability in estimating the exposure field parameters. Third, there is a bias from using approximate exposure field parameters in place of the unobserved true ones. We outline a three-stage correction procedure to account separately for each of these errors. A key insight is that we can account for the second part of the error (sampling variability in estimating the exposure) by averaging over simulations from the part of the posterior exposure surface that is informative for the outcome. This amounts to averaging over samples of the posterior exposure model parameters, a procedure that we call “parameter simulation”. One implication is that it is preferable to use a parametric correlation model (e.g., kriging) rather than a semi-parametric approximation. While the latter approach has been found to be effective in estimating mean exposure fields, it does not provide the needed decomposition of the posterior into informative and non-informative components. We illustrate the properties of our corrected estimators in a simulation study and present an example from environmental statistics. The focus of this paper is on linear health effect models with uncorrelated outcomes, but extensions to generalized linear models and correlated outcomes are possible.
机译:请注意,此研究的最新版本可作为华盛顿大学生物统计学工作论文系列的第350号工作论文获得(http://www.bepress.com/uwbiostat/paper350)。在环境流行病学和环境统计方面,直接测量每个对象的暴露通常不切实际。环境监测与统计模型结合使用,将暴露量分配给个人。结果是某种形式的接触不良,如果对接触进行过幼稚的处理,可能会导致健康影响估计中的复杂错误。曝光误差既不是“经典”也不是“伯克森”,因此标准回归校准方法不适用。我们将健康影响估计误差分解为三个部分。首先,如果曝光场相关,则标准误差太小,与估计曝光场参数的可变性无关。其次,标准误差太小,因为它们没有考虑估计曝光场参数的可变性。第三,使用近似曝光场参数代替未观察到的真实参数存在偏差。我们概述了一个三阶段的纠正过程,以分别说明这些错误中的每一个。一个关键的见解是,我们可以通过对后部暴露表面的一部分结果进行有益的模拟得出的平均值,来解释误差的第二部分(估计暴露的样本变异性)。这等于对后验暴露模型参数的样本求平均,这一过程我们称为“参数模拟”。一种暗示是,优选使用参数相关模型(例如,克里格法)而不是半参数近似。虽然已经发现后一种方法可以有效地估计平均暴露区域,但它不能提供将后验分解为信息性和非信息性成分的必要方法。我们在模拟研究中说明了校正后的估计量的性质,并给出了环境统计中的一个例子。本文的重点是结果不相关的线性健康效应模型,但可以推广到广义线性模型和相关结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号