首页> 外文OA文献 >Multithreaded Asynchronous Graph Traversal for In-Memory and Semi-External Memory
【2h】

Multithreaded Asynchronous Graph Traversal for In-Memory and Semi-External Memory

机译:内存和半外部内存的多线程异步图遍历

摘要

Processing large graphs is becoming increasingly important for many domains such as social networks, bioinformatics, etc. Unfortunately, many algorithms and implementations do not scale with increasing graph sizes. As a result, researchers have attempted to meet the growing data demands using parallel and external memory techniques. We present a novel asynchronous approach to compute Breadth-First-Search (BFS), Single-Source-Shortest-Paths, and Connected Components for large graphs in shared memory. Our highly parallel asynchronous approach hides data latency due to both poor locality and delays in the underlying graph data storage. We present an experimental study applying our technique to both In-Memory and Semi-External Memory graphs utilizing multi-core processors and solid-state memory devices. Our experiments using synthetic and real-world datasets show that our asynchronous approach is able to overcome data latencies and provide significant speedup over alternative approaches. For example, on billion vertex graphs our asynchronous BFS scales up to 14x on 16-cores. © 2010 IEEE.
机译:处理大型图对于许多领域(如社交网络,生物信息学等)变得越来越重要。不幸的是,许多算法和实现都无法随着图的大小的增加而扩展。结果,研究人员试图使用并行和外部存储技术来满足不断增长的数据需求。我们提出了一种新颖的异步方法来为共享内存中的大图计算广度优先搜索(BFS),单源最短路径和连接组件。我们的高度并行的异步方法由于不良的本地性和底层图形数据存储中的延迟而隐藏了数据延迟。我们提出了一项实验研究,将我们的技术应用于利用多核处理器和固态存储设备的内存和半外部内存图中。我们使用合成数据集和实际数据集进行的实验表明,我们的异步方法能够克服数据延迟,并比其他方法有明显的提速。例如,在十亿个顶点图上,我们的异步BFS在16核上可扩展到14倍。 ©2010 IEEE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号