首页> 外文OA文献 >Filtering remotely sensed chlorophyll concentrations in the Red Sea using a space-time covariance model and a Kalman filter
【2h】

Filtering remotely sensed chlorophyll concentrations in the Red Sea using a space-time covariance model and a Kalman filter

机译:使用时空协方差模型和卡尔曼滤波器过滤红海中遥感的叶绿素浓度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A statistical model is proposed to filter satellite-derived chlorophyll concentration from the Red Sea, and to predict future chlorophyll concentrations. The seasonal trend is first estimated after filling missing chlorophyll data using an Empirical Orthogonal Function (EOF)-based algorithm (Data Interpolation EOF). The anomalies are then modeled as a stationary Gaussian process. A method proposed by Gneiting (2002) is used to construct positive-definite space-time covariance models for this process. After choosing an appropriate statistical model and identifying its parameters, Kriging is applied in the space-time domain to make a one step ahead prediction of the anomalies. The latter serves as the prediction model of a reduced-order Kalman filter, which is applied to assimilate and predict future chlorophyll concentrations. The proposed method decreases the root mean square (RMS) prediction error by about 11% compared with the seasonal average.
机译:提出了一个统计模型来过滤红海中卫星衍生的叶绿素浓度,并预测未来的叶绿素浓度。使用基于经验正交函数(EOF)的算法(数据插值EOF)填充丢失的叶绿素数据后,首先估算季节性趋势。然后将异常建模为平稳的高斯过程。 Gneiting(2002)提出的一种方法被用来为这个过程构造正定时空协方差模型。在选择了合适的统计模型并确定了其参数之后,将克里格法应用于时空域,从而对异常情况提前了一步。后者用作降阶卡尔曼滤波器的预测模型,该滤波器用于吸收和预测未来的叶绿素浓度。与季节性平均值相比,该方法可将均方根(RMS)预测误差降低约11%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号