首页> 外文OA文献 >Exploring Permission-Induced Risk in Android Applications for Malicious Application Detection
【2h】

Exploring Permission-Induced Risk in Android Applications for Malicious Application Detection

机译:探索Android应用程序中的权限诱发风险以进行恶意应用程序检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Android has been a major target of malicious applications (malapps). How to detect and keep the malapps out of the app markets is an ongoing challenge. One of the central design points of Android security mechanism is permission control that restricts the access of apps to core facilities of devices. However, it imparts a significant responsibility to the app developers with regard to accurately specifying the requested permissions and to the users with regard to fully understanding the risk of granting certain combinations of permissions. Android permissions requested by an app depict the app's behavioral patterns. In order to help understanding Android permissions, in this paper, we explore the permission-induced risk in Android apps on three levels in a systematic manner. First, we thoroughly analyze the risk of an individual permission and the risk of a group of collaborative permissions. We employ three feature ranking methods, namely, mutual information, correlation coefficient, and T-test to rank Android individual permissions with respect to their risk. We then use sequential forward selection as well as principal component analysis to identify risky permission subsets. Second, we evaluate the usefulness of risky permissions for malapp detection with support vector machine, decision trees, as well as random forest. Third, we in depth analyze the detection results and discuss the feasibility as well as the limitations of malapp detection based on permission requests. We evaluate our methods on a very large official app set consisting of 310 926 benign apps and 4868 real-world malapps and on a third-party app sets. The empirical results show that our malapp detectors built on risky permissions give satisfied performance (a detection rate as 94.62% with a false positive rate as 0.6%), catch the malapps' essential patterns on violating permission access regulations, and are universally applicable to unknown malapps (detection rate as 74.03%).
机译:Android已成为恶意应用程序(malapps)的主要目标。如何检测和阻止恶意软件进入应用市场是一个持续的挑战。 Android安全机制的主要设计要点之一是权限控制,它限制了应用对设备核心设施的访问。但是,对于准确指定请求的权限,它给应用程序开发人员带来了重大责任,而对于完全理解授予某些权限组合的风险,这给用户带来了重大责任。应用程序请求的Android权限描述了该应用程序的行为模式。为了帮助理解Android权限,在本文中,我们以系统的方式在三个级别上探索了Android应用中的权限诱发风险。首先,我们彻底分析个人权限和一组协作权限的风险。我们采用三种特征排名方法,即互信息,相关系数和T检验,针对Android个人权限的风险进行排名。然后,我们使用顺序前向选择以及主成分分析来识别有风险的权限子集。其次,我们使用支持向量机,决策树以及随机森林评估风险许可对恶意应用检测的有用性。第三,我们深入分析了检测结果,并讨论了基于权限请求的恶意应用检测的可行性和局限性。我们在一个由310 926个良性应用程序和4868真实世界的恶意应用程序组成的大型官方应用程序集以及一个第三方应用程序集上评估我们的方法。实证结果表明,我们的基于风险许可的恶意软件检测器可提供令人满意的性能(检测率为94.62%,误报率为0.6%),可以捕获恶意软件违反许可访问规定的基本模式,并且普遍适用于未知恶意软件(检出率为74.03%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号