首页> 外文OA文献 >A novel fast and accurate pseudo-analytical simulation approach for MOAO
【2h】

A novel fast and accurate pseudo-analytical simulation approach for MOAO

机译:一种新颖,快速,精确的MOAO伪分析仿真方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multi-object adaptive optics (MOAO) is a novel adaptive optics (AO) technique for wide-field multi-object spectrographs (MOS). MOAO aims at applying dedicated wavefront corrections to numerous separated tiny patches spread over a large field of view (FOV), limited only by that of the telescope. The control of each deformable mirror (DM) is done individually using a tomographic reconstruction of the phase based on measurements from a number of wavefront sensors (WFS) pointing at natural and artificial guide stars in the field. We have developed a novel hybrid, pseudo-analytical simulation scheme, somewhere in between the end-to- end and purely analytical approaches, that allows us to simulate in detail the tomographic problem as well as noise and aliasing with a high fidelity, and including fitting and bandwidth errors thanks to a Fourier-based code. Our tomographic approach is based on the computation of the minimum mean square error (MMSE) reconstructor, from which we derive numerically the covariance matrix of the tomographic error, including aliasing and propagated noise. We are then able to simulate the point-spread function (PSF) associated to this covariance matrix of the residuals, like in PSF reconstruction algorithms. The advantage of our approach is that we compute the same tomographic reconstructor that would be computed when operating the real instrument, so that our developments open the way for a future on-sky implementation of the tomographic control, plus the joint PSF and performance estimation. The main challenge resides in the computation of the tomographic reconstructor which involves the inversion of a large matrix (typically 40 000 × 40 000 elements). To perform this computation efficiently, we chose an optimized approach based on the use of GPUs as accelerators and using an optimized linear algebra library: MORSE providing a significant speedup against standard CPU oriented libraries such as Intel MKL. Because the covariance matrix is symmetric, several optimization schemes can be envisioned to speedup even further the computation. Optimizing the speed of the reconstructor computation is of major interest not only for the design study of MOAO instruments, but also for future routine operations of the system as the reconstructor has to be updated regularly to cope for atmospheric variability. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
机译:多目标自适应光学(MOAO)是一种用于宽视场多目标光谱仪(MOS)的新型自适应光学(AO)技术。 MOAO旨在将专用的波前校正应用于散布在大视野(FOV)上的众多分离的微小斑块,仅受望远镜的限制。对每个可变形反射镜(DM)的控制是通过根据来自指向自然和人造导星的多个波前传感器(WFS)的测量值,使用相位的层析成像重建来单独完成的。我们开发了一种新颖的混合,伪分析模拟方案,介于端到端和纯粹的分析方法之间,使我们能够以高保真度详细地模拟断层图像问题以及噪声和混叠,包括基于傅立叶的代码,导致拟合和带宽错误。我们的层析成像方法基于最小均方误差(MMSE)重建器的计算,从中我们可以从数值上得出层析误差的协方差矩阵,包括混叠和传播噪声。然后,我们能够像与PSF重建算法一样,模拟与残差的此协方差矩阵相关的点扩展函数(PSF)。我们方法的优势在于,我们可以计算与在操作实际仪器时将要计算出的层析成像重建器相同的层析成像重建器,因此我们的开发为将来在层析成像控制的空中实施以及联合PSF和性能评估开辟了道路。主要挑战在于层析成像重建器的计算,该计算涉及对大型矩阵(通常为40 000×40 000个元素)的求逆。为了有效地执行此计算,我们选择了基于GPU作为加速器并使用优化的线性代数库的优化方法:MORSE与面向标准CPU的库(如Intel MKL)相比,可提供明显的加速。由于协方差矩阵是对称的,因此可以设想几种优化方案以进一步加快计算速度。不仅对于MOAO仪器的设计研究,而且对于系统的未来例行操作而言,优化重建器计算的速度不仅是主要的兴趣所在,因为必须定期更新重建器以应对大气变化。 ©(2014)版权所有,光电仪器工程师协会(SPIE)。摘要的下载仅允许个人使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号