首页> 外文OA文献 >Multi-Scale Factor Analysis of High-Dimensional Brain Signals
【2h】

Multi-Scale Factor Analysis of High-Dimensional Brain Signals

机译:高维脑信号的多尺度因子分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we develop an approach to modeling high-dimensional networks with a large number of nodes arranged in a hierarchical and modular structure. We propose a novel multi-scale factor analysis (MSFA) model which partitions the massive spatio-temporal data defined over the complex networks into a finite set of regional clusters. To achieve further dimension reduction, we represent the signals in each cluster by a small number of latent factors. The correlation matrix for all nodes in the network are approximated by lower-dimensional sub-structures derived from the cluster-specific factors. To estimate regional connectivity between numerous nodes (within each cluster), we apply principal components analysis (PCA) to produce factors which are derived as the optimal reconstruction of the observed signals under the squared loss. Then, we estimate global connectivity (between clusters or sub-networks) based on the factors across regions using the RV-coefficient as the cross-dependence measure. This gives a reliable and computationally efficient multi-scale analysis of both regional and global dependencies of the large networks. The proposed novel approach is applied to estimate brain connectivity networks using functional magnetic resonance imaging (fMRI) data. Results on resting-state fMRI reveal interesting modular and hierarchical organization of human brain networks during rest.
机译:在本文中,我们开发了一种建模高维网络的方法,该网络具有以分层和模块化结构排列的大量节点。我们提出了一种新颖的多尺度因子分析(MSFA)模型,该模型将通过复杂网络定义的大量时空数据划分为一组有限的区域簇。为了实现进一步的降维,我们用少量潜在因子表示每个群集中的信号。网络中所有节点的相关矩阵都由从特定于群集的因子得出的低维子结构近似。为了估计(在每个群集内)多个节点之间的区域连通性,我们应用主成分分析(PCA)来产生因子,这些因子作为平方损失下观测信号的最佳重构而得出。然后,我们使用RV系数作为交叉相关性度量,根据跨区域的因素估计全局连通性(在群集或子网络之间)。这样就可以对大型网络的区域和全局依赖性进行可靠且计算高效的多尺度分析。所提出的新颖方法适用于使用功能磁共振成像(fMRI)数据估计大脑连接性网络。静止状态功能磁共振成像的结果揭示了休息期间人脑网络的有趣模块化和分层组织。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号