首页> 外文OA文献 >Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy
【2h】

Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

机译:使用手机荧光显微镜检测水性病原体的监督机器学习算法的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of ~0.8 cm2 and weighs only ~180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved a limit of detection of 12 cysts per 10 ml, an average cyst capture efficiency of ~79%, and an accuracy of ~95%. Providing rapid detection and quantification of waterborne pathogens without the need for a microbiology expert, this field-portable imaging and sensing platform running on a smartphone could be very useful for water quality monitoring in resource-limited settings.
机译:贾第鞭毛虫是一种水生寄生虫,每年在全球影响数百万人,引起称为贾第鞭毛虫病的腹泻病。及时检测饮用水中该寄生虫的囊肿的存在对于预防疾病的传播非常重要,尤其是在资源有限的环境中。在这里,我们提供了扩展的实验测试以及对现场便携式且具有成本效益的显微镜平台的性能和可重复性的评估,该平台可用于自动检测和计数水样(包括自来水,非饮用水和池塘水)中的贾第鞭毛虫囊肿。这个紧凑的平台基于我们以前的工作,由基于智能手机的荧光显微镜,一次性样品处理盒和定制开发的智能手机应用程序组成。我们的手机显微镜视野宽广,约为0.8平方厘米,仅重约180 g(不包括手机)。定制开发的智能手机应用程序提供了用户友好的图形界面,指导用户捕获样品滤膜的荧光图像,并使用图像处理算法和训练数据在我们的服务器上自动对其进行分析,该数据包括> 30,000个囊肿图像捕获的其他荧光颗粒的图像> 100,000,包括例如灰尘。从样品制备到囊肿自动计数所需的总时间,对于每10毫升测试的水样品,不到一小时。我们使用多种监督分类模型(包括支持向量机和最近的邻居)比较了平台的敏感性和特异性,并证明了使用原始图像文件格式的引导聚合(即装袋)方法可为自动检测贾第鞭毛虫囊肿提供最佳性能。我们使用从不同来源(例如自来水,非饮用水,池塘水)中采集的水样评估了该机器学习型病原体检测设备的性能,并实现了每10毫升12个囊肿的检出限,平均囊肿捕获效率约为79%,准确度约为95%。无需微生物学专家即可快速检测和定量水生病原体,这种在智能手机上运行的现场便携式成像和传感平台对于资源有限的环境中的水质监测非常有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号