首页> 外文OA文献 >A new deterministic Ensemble Kalman Filter with one-step-ahead smoothing for storm surge forecasting
【2h】

A new deterministic Ensemble Kalman Filter with one-step-ahead smoothing for storm surge forecasting

机译:一种新的确定性Ensemble Kalman滤波器,具有一步式平滑功能,可用于风暴潮预报

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Ensemble Kalman Filter (EnKF) is a popular data assimilation method for state-parameter estimation. Following a sequential assimilation strategy, it breaks the problem into alternating cycles of forecast and analysis steps. In the forecast step, the dynamical model is used to integrate a stochastic sample approximating the state analysis distribution (called analysis ensemble) to obtain a forecast ensemble. In the analysis step, the forecast ensemble is updated with the incoming observation using a Kalman-like correction, which is then used for the next forecast step. In realistic large-scale applications, EnKFs are implemented with limited ensembles, and often poorly known model errors statistics, leading to a crude approximation of the forecast covariance. This strongly limits the filter performance. Recently, a new EnKF was proposed in [1] following a one-step-ahead smoothing strategy (EnKF-OSA), which involves an OSA smoothing of the state between two successive analysis. At each time step, EnKF-OSA exploits the observation twice. The incoming observation is first used to smooth the ensemble at the previous time step. The resulting smoothed ensemble is then integrated forward to compute a "pseudo forecast" ensemble, which is again updated with the same observation. The idea of constraining the state with future observations is to add more information in the estimation process in order to mitigate for the sub-optimal character of EnKF-like methods. The second EnKF-OSA "forecast" is computed from the smoothed ensemble and should therefore provide an improved background.ududIn this work, we propose a deterministic variant of the EnKF-OSA, based on the Singular Evolutive Interpolated Ensemble Kalman (SEIK) filter. The motivation behind this is to avoid the observations perturbations of the EnKF in order to improve the scheme's behavior when assimilating big data sets with small ensembles. The new SEIK-OSA scheme is implemented and its efficiency is demonstrated by performing assimilation experiments with the highly nonlinear Lorenz model and a realistic setting of the Advanced Circulation (ADCIRC) model configured for storm surge forecasting in the Gulf of Mexico during Hurricane Ike.
机译:集合卡尔曼滤波器(EnKF)是一种用于状态参数估计的流行数据同化方法。遵循顺序同化策略,它将问题分解为预测和分析步骤的交替循环。在预测步骤中,使用动力学模型对近似状态分析分布的随机样本(称为分析集合)进行积分,以获得预测集合。在分析步骤中,使用卡尔曼式校正将输入的观测值更新为预测合奏,然后将其用于下一个预测步骤。在现实的大规模应用中,EnKF的实现是有限的集成,并且通常很少知道模型误差统计信息,从而导致对预测协方差的粗略近似。这严重限制了滤波器的性能。最近,在[1]中提出了一种新的EnKF,它遵循一步一步平滑策略(EnKF-OSA),该策略涉及两次连续分析之间状态的OSA平滑。在每个时间步骤中,EnKF-OSA都会利用该观察两次。传入的观测值首先用于在上一个时间步长平滑整体。然后将生成的平滑合奏进行正向积分,以计算“伪预测”合奏,并再次使用相同的观察值进行更新。用将来的观测值约束状态的想法是在估计过程中添加更多信息,以减轻类EnKF方法的次优特征。第二个EnKF-OSA“预测”是从平滑合奏计算得出的,因此应该提供改进的背景。 ud ud在这项工作中,我们基于奇异演化内插集合卡尔曼(SEIK),提出了EnKF-OSA的确定性变体。 )过滤器。其背后的动机是避免EnKF的观测扰动,以便在用小集合吸收大数据集时改善方案的行为。实施了新的SEIK-OSA方案,并通过使用高度非线性的Lorenz模型和配置为在飓风艾克期间在墨西哥湾进行风暴潮预报的高级循环(ADCIRC)模型的实际设置进行了同化实验,证明了其效率。

著录项

  • 作者

    Raboudi Naila;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号