首页> 外文OA文献 >High-Resolution NDVI from Planet's Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture
【2h】

High-Resolution NDVI from Planet's Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture

机译:行星地球观测纳米卫星星座的高分辨率NDVI:精密农业的新数据源

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Planet Labs ("Planet") operate the largest fleet of active nano-satellites in orbit, offering an unprecedented monitoring capacity of daily and global RGB image capture at 3-5 m resolution. However, limitations in spectral resolution and lack of accurate radiometric sensor calibration impact the utility of this rich information source. In this study, Planet's RGB imagery was translated into a Normalized Difference Vegetation Index (NDVI): a common metric for vegetation growth and condition. Our framework employs a data mining approach to build a set of rule-based regression models that relate RGB data to atmospherically corrected Landsat-8 NDVI. The approach was evaluated over a desert agricultural landscape in Saudi Arabia where the use of near-coincident (within five days) Planet and Landsat-8 acquisitions in the training of the regression models resulted in NDVI predictabilities with an r2 of approximately 0.97 and a Mean Absolute Deviation (MAD) on the order of 0.014 (~9%). The MAD increased to 0.021 (~14%) when the Landsat NDVI training image was further away (i.e., 11-16 days) from the corrected Planet image. In these cases, the use of MODIS observations to inform on the change in NDVI occurring between overpasses was shown to significantly improve prediction accuracies. MAD levels ranged from 0.002 to 0.011 (3.9% to 9.1%) for the best performing 80% of the data. The technique is generic and extendable to any region of interest, increasing the utility of Planet's dense time-series of RGB imagery.
机译:Planet Labs(“ Planet”)运营着轨道上最大的活动纳米卫星舰队,以3-5 m的分辨率提供了每日和全球RGB图像捕获的空前监控能力。但是,光谱分辨率的局限性和缺乏精确的辐射度传感器校准影响了这种丰富信息源的实用性。在这项研究中,Planet的RGB图像被转换为​​归一化植被指数(NDVI):这是植被生长和状况的常用指标。我们的框架采用数据挖掘方法来构建一套基于规则的回归模型,该模型将RGB数据与经过大气校正的Landsat-8 NDVI相关联。在沙特阿拉伯的沙漠农业景观上对该方法进行了评估,在回归模型的训练中使用近乎一致的(五天内)Planet和Landsat-8采集获得了NDVI可预测性,r2约为0.97,均值绝对偏差(MAD)约为0.014(〜9%)。当Landsat NDVI训练图像距离校正后的行星图像更远(即11-16天)时,MAD增加到0.021(〜14%)。在这些情况下,使用MODIS观测结果来告知高架桥之间NDVI的变化已被证明可以显着提高预测准确性。对于80%的最佳数据,MAD水平范围为0.002至0.011(3.9%至9.1%)。该技术是通用的,可以扩展到任何感兴趣的区域,从而提高了Planet密集的RGB图像时间序列的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号