首页> 外文OA文献 >MOSS-5: A Fast Method of Approximating Counts of 5-Node Graphlets in Large Graphs
【2h】

MOSS-5: A Fast Method of Approximating Counts of 5-Node Graphlets in Large Graphs

机译:MOSS-5:一种快速逼近大图中5节点图的数量的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Counting 3-, 4-, and 5-node graphlets in graphs is important for graph mining applications such as discovering abnormal/evolution patterns in social and biology networks. In addition, it is recently widely used for computing similarities between graphs and graph classification applications such as protein function prediction and malware detection. However, it is challenging to compute these metrics for a large graph or a large set of graphs due to the combinatorial nature of the problem. Despite recent efforts in counting triangles (a 3-node graphlet) and 4-node graphlets, little attention has been paid to characterizing 5-node graphlets. In this paper, we develop a computationally efficient sampling method to estimate 5-node graphlet counts. We not only provide fast sampling methods and unbiased estimators of graphlet counts, but also derive simple yet exact formulas for the variances of the estimators which is of great value in practice-the variances can be used to bound the estimates' errors and determine the smallest necessary sampling budget for a desired accuracy. We conduct experiments on a variety of real-world datasets, and the results show that our method is several orders of magnitude faster than the state-of-the-art methods with the same accuracy.
机译:对图中的3节点,4节点和5节点的小图进行计数对于图挖掘应用(例如在社交和生物学网络中发现异常/进化模式)非常重要。此外,它最近被广泛用于计算图和图分类应用程序之间的相似度,例如蛋白质功能预测和恶意软件检测。但是,由于问题的组合性质,为大型图或大型图集计算这些度量具有挑战性。尽管最近在计算三角形(3节点的graphlet)和4节点的graphlet方面做出了努力,但很少有人关注表征5节点的graphlet。在本文中,我们开发了一种计算有效的采样方法来估计5节点图小数。我们不仅提供快速抽样方法和图小波计数的无偏估计量,而且为估计量的方差导出简单而精确的公式,这在实践中非常有用-方差可用于限制估计值的误差并确定最小的所需的抽样预算以获得所需的准确性。我们在各种现实世界的数据集上进行了实验,结果表明,与具有相同精度的最新方法相比,我们的方法要快几个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号