首页> 外文OA文献 >A novel approach to calibrate the Hemodynamic Model using functional Magnetic Resonance Imaging (fMRI) measurements
【2h】

A novel approach to calibrate the Hemodynamic Model using functional Magnetic Resonance Imaging (fMRI) measurements

机译:使用功能性磁共振成像(fMRI)测量校准血流动力学模型的新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundudThe calibration of the hemodynamic model that describes changes in blood flow and blood oxygenation during brain activation is a crucial step for successfully monitoring and possibly predicting brain activity. This in turn has the potential to provide diagnosis and treatment of brain diseases in early stages.udNew MethodudWe propose an efficient numerical procedure for calibrating the hemodynamic model using some fMRI measurements. The proposed solution methodology is a regularized iterative method equipped with a Kalman filtering-type procedure. The Newton component of the proposed method addresses the nonlinear aspect of the problem. The regularization feature is used to ensure the stability of the algorithm. The Kalman filter procedure is incorporated here to address the noise in the data.udResultsudNumerical results obtained with synthetic data as well as with real fMRI measurements are presented to illustrate the accuracy, robustness to the noise, and the cost-effectiveness of the proposed method.udComparison with Existing Method(s)udWe present numerical results that clearly demonstrate that the proposed method outperforms the Cubature Kalman Filter (CKF), one of the most prominent existing numerical methods.udConclusionudWe have designed an iterative numerical technique, called the TNM-CKF algorithm, for calibrating the mathematical model that describes the single-event related brain response when fMRI measurements are given. The method appears to be highly accurate and effective in reconstructing the BOLD signal even when the measurements are tainted with high noise level (as high as 30%).
机译:背景 ud描述脑激活过程中血流和血液氧合变化的血液动力学模型的校准是成功监测并可能预测脑活动的关键步骤。反过来,这有可能在早期阶段为脑部疾病提供诊断和治疗。 ud新方法 ud我们提出了一种有效的数值程序,用于使用一些fMRI测量来校准血液动力学模型。所提出的解决方案方法是一种配有卡尔曼滤波类型程序的正则迭代方法。所提出方法的牛顿分量解决了问题的非线性方面。正则化功能用于确保算法的稳定性。此处合并了卡尔曼滤波程序,以解决数据中的噪声。 udResults ud使用合成数据以及实际fMRI测量获得的数值结果用于说明噪声的准确性,鲁棒性和成本效益。 ud与现有方法的比较 ud我们提供的数值结果清楚地表明,该方法优于Cubature Kalman滤波器(CKF),后者是最突出的现有数值方法之一。 ud结论 ud我们设计了一个迭代数值一种称为TNM-CKF算法的技术,用于校准描述fMRI测量结果时描述与单事件相关的大脑反应的数学模型。即使在测量结果被高噪声水平(高达30%)污染的情况下,该方法在重构BOLD信号方面似乎也非常准确和有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号