首页> 外文OA文献 >Dynamic Modeling and Control of Distributed Heat Transfer Mechanisms: Application to a Membrane Distillation Module
【2h】

Dynamic Modeling and Control of Distributed Heat Transfer Mechanisms: Application to a Membrane Distillation Module

机译:分布式传热机制的动力学建模与控制:在膜蒸馏模块中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sustainable desalination technologies are the smart solution for producing fresh waterudand preserve the environment and energy by using sustainable renewable energyudsources. Membrane distillation (MD) is an emerging technology which can be drivenudby renewable energy. It is an innovative method for desalinating seawater and brackishudwater with high quality production, and the gratitude is to its interesting potentials.udMD includes a transfer of water vapor from a feed solution to a permeateudsolution through a micro-porous hydrophobic membrane, rejecting other non-volatileudconstituents present in the influent water. The process is driven by the temperatureuddifference along the membrane boundaries. Different control applications andudsupervision techniques would improve the performance and the efficiency of the MDudprocess, however controlling the MD process requires comprehensive mathematicaludmodel for the distributed heat transfer mechanisms inside the process. Our objectiveudis to propose a dynamic mathematical model that accounts for the time evolution ofudthe involved heat transfer mechanisms in the process, and to be capable of hostingudintermittent energy supplies, besides managing the production rate of the process,udand optimizing its energy consumption. Therefore, we propose the 2D Advection-Diffusion Equation model to account for the heat diffusion and the heat convection mechanisms inside the process. Furthermore, experimental validations have provedudhigh agreement between model simulations and experiments with less than 5% relativeuderror. Enhancing the MD production is an anticipated goal, therefore, two mainudcontrol strategies are proposed. Consequently, we propose a nonlinear controller foruda semi-discretized version of the dynamic model to achieve an asymptotic trackingudfor a desired temperature difference. Similarly, an observer-based feedback controludis used to track sufficient temperature difference for better productivity. The secondudcontrol strategy seeks for optimizing the trade-o between the maximum permeate flux production for a given set of inlet temperatures of the feed and the permeate solutions,udand the minimum of the energy consumed by the pump udow rates of the feedudand the permeate solutions. Accordingly, Extremum Seeking Control is proposed forudthis optimization, where the pump udflow rates of the feed and the permeate solutionsudare the manipulated control input.
机译:可持续的海水淡化技术是通过使用可持续的可再生能源资源来生产淡水 udd并保护环境和能源的智能解决方案。膜蒸馏(MD)是一种新兴技术,可以通过可再生能源驱动。这是一种用于高质量生产海水和咸淡盐水的创新方法,感谢其有趣的潜力。 udMD包括通过微孔疏水膜将水蒸气从进料溶液转移到渗透物溶液中的方法。 ,拒绝流入水中存在的其他非挥发性非构成成分。该过程是由沿膜边界的温度/差异驱动的。不同的控制应用程序和监控技术将提高MD程序的性能和效率,但是控制MD程序需要过程内部分布式传热机制的综合数学模型。我们的目标是提供一个动态数学模型,解决该过程中涉及的传热机制的时间演化问题,并能够托管/间歇性能源供应,同时管理过程的生产率,优化和优化它的能耗。因此,我们提出了二维对流扩散方程模型来考虑过程内部的热扩散和热对流机理。此外,实验验证已证明模型仿真与实验之间的一致性很高,相对误差小于5%。提高MD生产量是一个预期目标,因此,提出了两种主要的控制策略。因此,我们提出了一种针对动态模型的半离散版本的非线性控制器,以实现所需温度差的渐近跟踪。类似地,基于观察者的反馈控件用于跟踪足够的温度差以提高生产率。第二种控制策略是针对给定的一组进料温度和渗透液,优化最大渗透通量产量与渗透溶液之间的权衡,以降低泵的能耗。 udand渗透溶液。因此,提出了用于此优化的极值搜索控制,其中,泵进料和渗透液的流速敢于操纵控制输入。

著录项

  • 作者

    Eleiwi Fadi;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号