首页> 外文OA文献 >Faster PET reconstruction with a stochastic primal-dual hybrid gradient method
【2h】

Faster PET reconstruction with a stochastic primal-dual hybrid gradient method

机译:随机的原始-对偶混合梯度法可更快地进行PET重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Image reconstruction in positron emission tomography (PET) is computationally challenging due to Poisson noise, constraints and potentially non-smooth priors-let alone the sheer size of the problem. An algorithm that can cope well with the first three of the aforementioned challenges is the primal-dual hybrid gradient algorithm (PDHG) studied by Chambolle and Pock in 2011. However, PDHG updates all variables in parallel and is therefore computationally demanding on the large problem sizes encountered with modern PET scanners where the number of dual variables easily exceeds 100 million. In this work, we numerically study the usage of SPDHG-a stochastic extension of PDHG-but is still guaranteed to converge to a solution of the deterministic optimization problem with similar rates as PDHG. Numerical results on a clinical data set show that by introducing randomization into PDHG, similar results as the deterministic algorithm can be achieved using only around 10 % of operator evaluations. Thus, making significant progress towards the feasibility of sophisticated mathematical models in a clinical setting.
机译:由于泊松噪声,约束条件和潜在的不平滑先验条件,正电子发射断层扫描(PET)中的图像重建在计算上具有挑战性,更不用说问题的严重性了。 Chambolle和Pock于2011年研究了一种原始对偶混合梯度算法(PDHG),该算法可以很好地应对上述前三个挑战。但是,PDHG并行更新所有变量,因此在计算上需要较大的问题双变量数量轻易超过1亿个的现代PET扫描仪遇到的最大尺寸。在这项工作中,我们对SPDHG的使用进行了数值研究,它是PDHG的随机扩展,但仍然可以保证收敛到具有与PDHG相似的速率的确定性优化问题的解决方案。临床数据集上的数值结果表明,通过将随机性引入PDHG,仅使用大约10%的操作员评估即可获得与确定性算法相似的结果。因此,在复杂的数学模型在临床上的可行性方面取得了重大进展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号