首页> 外文OA文献 >Synthesis of TiO2 nanoparticles containing Fe, Si, and V using multiple diffusion flames and catalytic oxidation capability of carbon-coated nanoparticles
【2h】

Synthesis of TiO2 nanoparticles containing Fe, Si, and V using multiple diffusion flames and catalytic oxidation capability of carbon-coated nanoparticles

机译:多重扩散火焰和碳包覆纳米粒子的催化氧化能力合成含铁,硅和钒的TiO2纳米粒子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Titanium dioxide (TiO2) nanoparticles containing iron, silicon, and vanadium are synthesized using multiple diffusion flames. The growth of carbon-coated (C–TiO2), carbon-coated with iron oxide (Fe/C–TiO2), silica-coated (Si–TiO2), and vanadium-doped (V–TiO2) TiO2 nanoparticles is demonstrated using a single-step process. Hydrogen, oxygen, and argon are utilized to establish the flame, with titanium tetraisopropoxide (TTIP) as the precursor for TiO2. For the growth of Fe/C–TiO2 nanoparticles, TTIP is mixed with xylene and ferrocene. While for the growth of Si–TiO2 and V–TiO2, TTIP is mixed with hexamethyldisiloxane (HMDSO) and vanadium (V) oxytriisopropoxide, respectively. The synthesized nanoparticles are characterized using high-resolution transmission electron microscopy (HRTEM) with energy-filtered TEM for elemental mapping (of Si, C, O, and Ti), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption BET surface area analysis, and thermogravimetric analysis. Anatase is the dominant phase for the C–TiO2, Fe/C–TiO2, and Si–TiO2 nanoparticles, whereas rutile is the dominant phase for the V–TiO2 nanoparticles. For C–TiO2 and Fe/C–TiO2, the nanoparticles are coated with about 3-5-nm thickness of carbon. The iron-based TiO2 nanoparticles significantly improve the catalytic oxidation of carbon, where complete oxidation of carbon occurs at a temperature of 470 °C (with iron) compared to 610 °C (without iron). Enhanced catalytic oxidation properties are also observed for model soot particles, Printex-U, when mixed with Fe/C-TiO2. With regards to Si–TiO2 nanoparticles, a uniform coating of 3 to 8 nm of silicon dioxide is observed around the TiO2 particles. This coating mainly occurs due to variance in the chemical reaction rates of the precursors. Finally, with regards to V–TiO2, vanadium is doped within the TiO2 nanoparticles as visualized by HRTEM and XPS further confirms the formation of V4+ and V5+ oxidation states.
机译:使用多次扩散火焰合成了包含铁,硅和钒的二氧化钛(TiO2)纳米粒子。使用碳纳米管证明了碳涂层(C–TiO2),碳涂层氧化铁(Fe / C–TiO2),二氧化硅涂层(Si–TiO2)和钒掺杂(V–TiO2)纳米颗粒的生长。单步过程。利用四异丙醇钛(TTIP)作为TiO2的前体,利用氢气,氧气和氩气建立火焰。为了生长Fe / C-TiO2纳米颗粒,将TTIP与二甲苯和二茂铁混合。对于Si–TiO2和V–TiO2的生长,TTIP分别与六甲基二硅氧烷(HMDSO)和钒(V)氧三异丙醇混合。使用高分辨率透射电子显微镜(HRTEM)和能量过滤TEM进行元素映射(Si,C,O和Ti的元素映射),X射线衍射(XRD),拉曼光谱,X射线光电子,对合成的纳米颗粒进行表征光谱(XPS),氮吸附BET表面积分析和热重分析。锐钛矿是C–TiO2,Fe / C–TiO2和Si–TiO2纳米颗粒的主要相,而金红石是V–TiO2纳米颗粒的主要相。对于C-TiO2和Fe / C-TiO2,纳米颗粒被涂有约3-5-nm厚的碳。铁基TiO2纳米颗粒显着改善了碳的催化氧化,与610°C(无铁)相比,碳在470°C(含铁)下发生了完全氧化。当与Fe / C-TiO2混合时,还可以观察到模型烟灰颗粒Printex-U增强的催化氧化性能。关于Si–TiO2纳米粒子,在TiO2粒子周围观察到3至8 nm的二氧化硅均匀涂层。该涂层主要是由于前体的化学反应速率的变化而发生的。最后,关于V–TiO2,通过HRTEM和XPS观察,钒掺杂在TiO2纳米颗粒中,进一步证实了V4 +和V5 +氧化态的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号