首页> 外文OA文献 >Efficient numerical methods for simulating surface tension of multi-component mixtures with the gradient theory of fluid interfaces
【2h】

Efficient numerical methods for simulating surface tension of multi-component mixtures with the gradient theory of fluid interfaces

机译:利用流体界面梯度理论模拟多组分混合物表面张力的有效数值方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Surface tension significantly impacts subsurface flow and transport, and it is the main cause of capillary effect, a major immiscible two-phase flow mechanism for systems with a strong wettability preference. In this paper, we consider the numerical simulation of the surface tension of multi-component mixtures with the gradient theory of fluid interfaces. Major numerical challenges include that the system of the Euler-Lagrange equations is solved on the infinite interval and the coefficient matrix is not positive definite. We construct a linear transformation to reduce the Euler-Lagrange equations, and naturally introduce a path function, which is proven to be a monotonic function of the spatial coordinate variable. By using the linear transformation and the path function, we overcome the above difficulties and develop the efficient methods for calculating the interface and its interior compositions. Moreover, the computation of the surface tension is also simplified. The proposed methods do not need to solve the differential equation system, and they are easy to be implemented in practical applications. Numerical examples are tested to verify the efficiency of the proposed methods. © 2014 Elsevier B.V.
机译:表面张力显着影响地下流动和运输,这是毛细作用的主要原因,对于具有强烈润湿性的系统,毛细作用是不可混溶的主要两相流动机理。在本文中,我们考虑使用流体界面的梯度理论对多组分混合物的表面张力进行数值模拟。主要的数值挑战包括在无限区间上求解Euler-Lagrange方程组,并且系数矩阵不是正定的。我们构造了线性变换以简化Euler-Lagrange方程,并自然引入了路径函数,该函数被证明是空间坐标变量的单调函数。通过使用线性变换和路径函数,我们克服了上述困难,并开发了计算界面及其内部组成的有效方法。此外,表面张力的计算也被简化。所提出的方法不需要求解微分方程组,并且易于在实际应用中实现。通过数值算例验证了所提方法的有效性。 ©2014 Elsevier B.V.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号