首页> 外文OA文献 >Experimentally-based computational investigation into beat-to-beat variability in ventricular repolarization and its response to ionic current inhibition
【2h】

Experimentally-based computational investigation into beat-to-beat variability in ventricular repolarization and its response to ionic current inhibition

机译:基于实验的心室心律不齐及其对离子电流抑制的响应的计算研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Beat-to-beat variability in repolarization (BVR) has been proposed as an arrhythmic risk marker for disease and pharmacological action. The mechanisms are unclear but BVR is thought to be a cell level manifestation of ion channel stochasticity, modulated by cell-to-cell differences in ionic conductances. In this study, we describe the construction of an experimentally-calibrated set of stochastic cardiac cell models that captures both BVR and cell-to-cell differences in BVR displayed in isolated canine action potential measurements using pharmacological agents. Simulated and experimental ranges of BVR are compared in control and under pharmacological inhibition, and the key ionic currents determining BVR under physiological and pharmacological conditions are identified. Results show that the 4-aminopyridine-sensitive transient outward potassium current, Ito1, is a fundamental driver of BVR in control and upon complete inhibition of the slow delayed rectifier potassium current, IKs. In contrast, IKs and the L-type calcium current, ICaL, become the major contributors to BVR upon inhibition of the fast delayed rectifier potassium current, IKr. This highlights both IKs and Ito1 as key contributors to repolarization reserve. Partial correlation analysis identifies the distribution of Ito1 channel numbers as an important independent determinant of the magnitude of BVR and drug-induced change in BVR in control and under pharmacological inhibition of ionic currents. Distributions in the number of IKs and ICaL channels only become independent determinants of the magnitude of BVR upon complete inhibition of IKr. These findings provide quantitative insights into the ionic causes of BVR as a marker for repolarization reserve, both under control condition and pharmacological inhibition.
机译:复极中的逐搏变异性(BVR)已被提议作为疾病和药理作用的心律失常危险标志。机制尚不清楚,但是BVR被认为是离子通道电导率的细胞水平差异所调节的离子通道随机性的细胞水平表现。在这项研究中,我们描述了一组经过实验校准的随机心脏细胞模型,该模型可以捕获BVR和使用药理学方法在孤立犬动作电位测量中显示的BVR中的细胞间差异。比较了对照和药理作用下BVR的模拟和实验范围,并确定了在生理和药理条件下决定BVR的关键离子流。结果表明,对4-氨基吡啶敏感的瞬时向外钾电流Ito1是BVR在控制中的基本驱动力,并且在完全抑制缓慢延迟的整流钾电流IKs时起作用。相反,IKs和L型钙电流ICaL在抑制快速延迟的整流钾电流IKr时成为BVR的主要贡献者。这突出显示了IK和Ito1是重新极化储备的关键因素。部分相关分析将Ito1通道数的分布确定为BVR大小和药物诱导的BVR在控制中以及在离子流的药理抑制下的重要独立决定因素。在完全抑制IKr后,IK和ICaL通道数量的分布仅成为BVR大小的独立决定因素。这些发现提供了在控制条件和药理抑制作用下BVR作为复极化储备标志物的离子原因的定量见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号