首页> 外文OA文献 >A generalized approach for producing, quantifying, and validating citizen science data from wildlife images.
【2h】

A generalized approach for producing, quantifying, and validating citizen science data from wildlife images.

机译:一种用于从野生生物图像中生成,量化和验证公民科学数据的通用方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Citizen science has the potential to expand the scope and scale of research in ecology and conservation, but many professional researchers remain skeptical of data produced by nonexperts. We devised an approach for producing accurate, reliable data from untrained, nonexpert volunteers. On the citizen science website www.snapshotserengeti.org, more than 28,000 volunteers classified 1.51 million images taken in a large-scale camera-trap survey in Serengeti National Park, Tanzania. Each image was circulated to, on average, 27 volunteers, and their classifications were aggregated using a simple plurality algorithm. We validated the aggregated answers against a data set of 3829 images verified by experts and calculated 3 certainty metrics-level of agreement among classifications (evenness), fraction of classifications supporting the aggregated answer (fraction support), and fraction of classifiers who reported "nothing here" for an image that was ultimately classified as containing an animal (fraction blank)-to measure confidence that an aggregated answer was correct. Overall, aggregated volunteer answers agreed with the expert-verified data on 98% of images, but accuracy differed by species commonness such that rare species had higher rates of false positives and false negatives. Easily calculated analysis of variance and post-hoc Tukey tests indicated that the certainty metrics were significant indicators of whether each image was correctly classified or classifiable. Thus, the certainty metrics can be used to identify images for expert review. Bootstrapping analyses further indicated that 90% of images were correctly classified with just 5 volunteers per image. Species classifications based on the plurality vote of multiple citizen scientists can provide a reliable foundation for large-scale monitoring of African wildlife.
机译:公民科学有可能扩大生态学和保护学的研究范围和规模,但是许多专业研究人员仍然对非专家产生的数据持怀疑态度。我们设计了一种方法,可以从未经培训的非专业志愿者那里获得准确,可靠的数据。在公民科学网站www.snapshotserengeti.org上,超过28,000名志愿者分类了在坦桑尼亚塞伦盖蒂国家公园进行的一次大型相机陷阱调查中拍摄的151万幅图像。每个图像平均分发给27位志愿者,并使用简单的多元算法汇总其分类。我们通过专家验证的3829张图像数据集验证了汇总答案,并计算了3个确定性指标级别:分类(均匀度),支持汇总答案的分类分数(分数支持)和报告“无”的分类器分数此处”的图片最终被归类为包含动物(空白部分),以衡量汇总答案正确的置信度。总体而言,志愿者自愿回答的总数与98%的图像经过专家验证的数据一致,但准确性因物种共性而异,因此稀有物种的假阳性和假阴性率更高。易于计算的方差分析和事后Tukey检验表明,确定性指标是每个图像是否正确分类或可分类的重要指标。因此,确定性度量可用于识别图像以供专家审阅。自举分析进一步表明,正确分类了90%的图像,每个图像只有5名志愿者。基于多个公民科学家的多次投票进行的物种分类可以为大规模监测非洲野生动植物提供可靠的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号