首页> 外文OA文献 >Distribution kinetics theory of Ostwald ripening
【2h】

Distribution kinetics theory of Ostwald ripening

机译:奥斯特瓦尔德熟化的分布动力学理论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ostwald ripening occurs near equilibrium conditions when larger clusters grow at the expense of dissolving smaller clusters. We propose that ripening kinetics for growth and dissolution can be represented by a general population balance equation (PBE) for the cluster size distribution (CSD). This PBE can also describe cluster growth or dissolution in the absence of ripening. The Kelvin equation provides the effect of interfacial energy on solubility in terms of the cluster radius. The continuity equation conventionally applied to ripening or cluster growth is obtained as a Taylor series expansion of the governing PBE. Numerical and moment solutions of the PBE show the evolution of the CSD. The cluster number density declines, and the average cluster mass increases. The variance can initially increase as the CSD broadens by growth of large clusters, and then decrease until eventually vanishing. The final state after a long time is a single large cluster in equilibrium with the fluid solution.
机译:当较大的团簇以溶解较小的团簇为代价生长时,奥斯特瓦尔德熟化接近平衡条件。我们提出,生长和溶解的成熟动力学可以用簇大小分布(CSD)的总体种群平衡方程(PBE)来表示。该PBE还可以描述没有成熟的情况下簇的生长或溶解。开尔文方程式根据簇半径提供了界面能对溶解度的影响。作为控制性PBE的泰勒级数展开,可以得到传统上用于成熟或簇生长的连续性方程。 PBE的数值和矩解显示了CSD的演变。簇数密度下降,平均簇质量增加。当CSD通过大型群集的增长而扩大时,方差可以开始增加,然后减小直到最终消失。长时间后的最终状态是与流体溶液平衡的单个大簇。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号