首页> 外文OA文献 >Neural Network-Based Segmentation of Textures Using Gabor Features
【2h】

Neural Network-Based Segmentation of Textures Using Gabor Features

机译:使用Gabor特征的基于神经网络的纹理分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The effectiveness of Gabor filters for texture segmentation is well known. In this paper, we propose a texture identification scheme, based on a neural network (NN) using Gabor features. The features are derived from both the Gabor cosine and sine filters. Through experiments, we demonstrate the effectiveness of a NN based classifier using Gabor features for identifying textures in a controlled environment. The neural network used for texture identification is based on the multilayer perceptron (MLP) architecture. The classification results obtained show an improvement over those obtained by K-means clustering and maximum likelihood approaches.
机译:Gabor滤波器用于纹理分割的有效性是众所周知的。在本文中,我们提出了一种基于基于Gabor特征的神经网络(NN)的纹理识别方案。这些特征均来自Gabor余弦和正弦滤波器。通过实验,我们证明了基于Gabor特征的基于NN的分类器在受控环境中识别纹理的有效性。用于纹理识别的神经网络基于多层感知器(MLP)架构。获得的分类结果显示出比通过K-均值聚类和最大似然法获得的分类结果有所改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号