首页> 外文OA文献 >Theoretical foundations for finite-time transient stability and sensitivity analysis of power systems
【2h】

Theoretical foundations for finite-time transient stability and sensitivity analysis of power systems

机译:电力系统有限时间暂态稳定和灵敏度分析的理论基础

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Transient stability and sensitivity analysis of power systems are problems of enormous academic and practical interest. These classical problems have received renewed interest, because of the advancement in sensor technology in the form of phasor measurement units (PMUs). The advancement in sensor technology has provided unique opportunity for the development of real-time stability monitoring and sensitivity analysis tools. Transient stability problem in power system is inherently a problem of stability analysis of the non-equilibrium dynamics, because for a short time period following a fault or disturbance the system trajectory moves away from the equilibrium point. The real-time stability decision has to be made over this short time period. However, the existing stability definitions and hence analysis tools for transient stability are asymptotic in nature. In this thesis, we discover theoretical foundations for the short-term transient stability analysis of power systems, based on the theory of normally hyperbolic invariant manifolds and finite time Lyapunov exponents, adopted from geometric theory of dynamical systems. The theory of normally hyperbolic surfaces allows us to characterize the rate of expansion and contraction of co-dimension one material surfaces in the phase space. The expansion and contraction rates of these material surfaces can be computed in finite time. We prove that the expansion and contraction rates can be used as finite time transient stability certificates. Furthermore, material surfaces with maximum expansion and contraction rate are identified with the stability boundaries. These stability boundaries are used for computation of stability margin. We have used the theoretical framework for the development of model-based and model-free real-time stability monitoring methods. Both the model-based and model-free approaches rely on the availability of high resolution time series data from the PMUs for stability prediction. The problem of sensitivity analysis of power system, subjected to changes or uncertainty in load parameters and network topology, is also studied using the theory of normally hyperbolic manifolds. The sensitivity analysis is used for the identification and rank ordering of the critical interactions and parameters in the power network. The sensitivity analysis is carried out both in finite time and in asymptotic. One of the distinguishing features of the asymptotic sensitivity analysis is that the asymptotic dynamics of the system is assumed to be a periodic orbit. For asymptotic sensitivity analysis we employ combination of tools from ergodic theory and geometric theory of dynamical systems.
机译:电力系统的暂态稳定性和灵敏度分析是具有重大学术和实践意义的问题。由于相量测量单元(PMU)形式的传感器技术的进步,这些经典问题引起了人们的新兴趣。传感器技术的进步为实时稳定性监控和灵敏度分析工具的开发提供了独特的机会。电力系统中的暂态稳定性问题本质上是对非平衡动力学进行稳定性分析的问题,因为在故障或干扰之后的短时间内,系统轨迹会偏离平衡点。实时稳定性决定必须在这短时间内做出。但是,现有的稳定性定义以及因此用于瞬态稳定性的分析工具本质上都是渐近的。本文基于动力系统几何理论,基于常双曲不变流形和有限时间李雅普诺夫指数的理论,为电力系统的短期暂态稳定分析提供了理论基础。通常双曲曲面的理论使我们能够表征一种相空间中共维材料表面的膨胀和收缩速率。这些材料表面的膨胀和收缩率可以在有限的时间内计算出来。我们证明了膨胀率和收缩率可以用作有限时间瞬态稳定性证明。此外,具有最大膨胀率和收缩率的材料表面具有稳定性边界。这些稳定性边界用于计算稳定性裕度。我们已经使用理论框架来开发基于模型和无模型的实时稳定性监视方法。基于模型的方法和基于模型的方法均依赖于PMU的高分辨率时间序列数据的可用性来进行稳定性预测。利用常态双曲流形理论研究了电力系统灵敏度分析中受负荷参数变化或网络拓扑变化影响的问题。灵敏度分析用于识别电网中的关键相互作用和参数并对其进行排序。灵敏度分析既可以在有限时间内进行,也可以在渐近状态下进行。渐进灵敏度分析的显着特征之一是系统的渐近动力学被假定为周期轨道。对于渐进灵敏度分析,我们采用了遍历理论和动力学系统几何理论的工具组合。

著录项

  • 作者

    Dasgupta, Sambarta;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号