首页> 外文OA文献 >WRF forecast skill of the Great Plains low level jet and its correlation to forecast skill of mesoscale convective system precipitation
【2h】

WRF forecast skill of the Great Plains low level jet and its correlation to forecast skill of mesoscale convective system precipitation

机译:大平原低空急流的WRF预报技术及其与中尺度对流系统降水预报技术的相关性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the primary mechanisms for supporting summer nocturnal precipitation across the central United States is the Great Plains low-level Jet (LLJ). Mesoscale Convective Systems (MCSs) are organized storm complexes that can be supported from the upward vertical motion supplied at the terminus of the LLJ, which bring beneficial rains to farmers. As such, a need for forecasting these storm complexes exists. Correlating forecast skills of the LLJ and MCS precipitation in high spatial resolution modeling was the main goal of this research. STAGE IV data was used as observations for MCS precipitation and the 00-hr 13 km RUC analysis was employed for evaluation of the LLJ. The 4 km WRF was used for high resolution forecast simulations, with 2 microphysics and 3 planetary boundary layer schemes selected for a sensitivity study to see which model run best simulated reality. It was found that the forecast skill of the potential temperature and directional components of the geostrophic and ageostrophic winds within the LLJ correlated well with MCS precipitation, especially early during LLJ evolution. Since the 20 real cases sampled consisted of three LLJ types (synoptic, inertial oscillation and transition), forecast skill in other parameters such as deep layer and low level shear, convergence, frontogenesis and stability parameters were compared to MCS forecast skill to see if consistent signals outside of the LLJ influenced MCS evolution in forecasts. No correlations were found among these additional parameters. Given the variety of synoptic setups present, the lack of forecast skill correlations between several variables and MCSs resulted as different synoptic or mesoscale mechanisms played varying roles if importance in different cases.
机译:大平原低空急流(LLJ)是支持美国中部夏季夜间降水的主要机制之一。中尺度对流系统(MCS)是有组织的风暴场,可以通过LLJ终点站提供的向上垂直运动来支撑,这给农民带来了有益的降雨。因此,存在预测这些风暴复合体的需求。在高空间分辨率模拟中使LLJ和MCS降水的预报技能相互关联是本研究的主要目标。 IV期数据用作MCS降水的观测资料,00小时13 km RUC分析用于评估LLJ。使用4 km的WRF进行高分辨率的预测模拟,并选择2种微观物理学和3种行星边界层方案进行敏感性研究,以查看哪种模型能最好地模拟现实。研究发现,低空急流内地转风和中转风的潜在温度和方向成分的预报技巧与MCS降水有很好的相关性,尤其是在低空急流演化的早期。由于采样的20个实际案例由三种LLJ类型(天气,惯性振荡和过渡)组成,因此将其他参数(例如深层和低水平剪切,收敛,前生和稳定性参数)的预测技能与MCS预测技能进行比较,以查看是否一致LLJ以外的信号影响了预报的MCS演变。在这些附加参数之间未发现相关性。鉴于当前的天气设置多种多样,由于不同的天气或中尺度机制在不同情况下的重要性不同,因此多个变量与MCS之间缺乏预测技能的相关性。

著录项

  • 作者

    Squitieri Brian Joseph;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号