首页> 外文OA文献 >Evaluating modularity in morphometric data: challenges with the RV coefficient and a new test measure
【2h】

Evaluating modularity in morphometric data: challenges with the RV coefficient and a new test measure

机译:评估形态计量数据中的模块性:RV系数和新的测试方法带来的挑战

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

1: Modularity describes the case where patterns of trait covariation are unevenly dispersed across traits. Specifically, trait correlations are high and concentrated within subsets of variables (modules), but the correlations between traits across modules are relatively weaker. For morphometric datasets, hypotheses of modularity are commonly evaluated using the RV coefficient, an association statistic used in a wide variety of fields. 2: In this article I explore the properties of the RV coefficient using simulated data sets. Using data drawn from a normal distribution where the data were neither modular nor integrated in structure, I show that the RV coefficient is adversely affected by attributes of the data (sample size and the number of variables) that do not characterize the covariance structure between sets of variables. Thus, with the RV coefficient, patterns of modularity or integration in data are confounded with trends generated by sample size and the number of variables, which limits biological interpretations and renders comparisons of RV coefficients across datasets uninformative. 3: As an alternative I propose the covariance ratio (CR) for quantifying modular structure, and show that it is unaffected by sample size or the number of variables. Further, statistical tests based on the CR exhibit appropriate type I error rates, and display higher statistical power relative to the RV coefficient when evaluating modular data. 4: Overall, these findings demonstrate that the RV coefficient does not display statistical characteristics suitable for reliable assessment of hypotheses of modular or integrated structure, and therefore should not be used to evaluate these patterns in morphological datasets. By contrast, the covariance ratio meets these criteria and provides a useful alternative method for assessing the degree of modular structure in morphological data.
机译:1:模块化描述了性状协变模式在各个性状之间分布不均的情况。具体而言,特征相关性很高,并且集中在变量(模块)的子集中,但是跨模块的特征之间的相关性相对较弱。对于形态计量数据集,通常使用RV系数(在许多领域中使用的关联统计量)来评估模块化的假设。 2:在本文中,我使用模拟数据集探索RV系数的属性。使用从数据既非模块化也非结构化的正态分布中提取的数据,我发现RV系数受到数据属性(样本大小和变量数量)的不利影响,这些属性无法描述集合之间的协方差结构变量。因此,利用RV系数,数据的模块化或集成模式会与样本大小和变量数量所产生的趋势混淆,这限制了生物学解释,并使整个数据集之间RV系数的比较缺乏信息性。 3:作为替代方案,我提出了协方差比(CR)用于量化模块化结构,并表明它不受样本量或变量数量的影响。此外,基于CR的统计测试显示出适当的I型错误率,并且在评估模块化数据时显示出相对于RV系数更高的统计功效。 4:总体而言,这些发现表明RV系数未显示出适合可靠评估模块化或集成结构假设的统计特征,因此,不应将其用于评估形态数据集中的这些模式。相比之下,协方差比满足这些标准,并为评估形态数据中的模块化结构程度提供了一种有用的替代方法。

著录项

  • 作者

    Adams, Dean C.;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号