首页> 外文OA文献 >Etude, alignement et contrôle de surfaces optiques segmentées ou discontinues. Applications en Sciences de l'Univers
【2h】

Etude, alignement et contrôle de surfaces optiques segmentées ou discontinues. Applications en Sciences de l'Univers

机译:研究,对​​准和控制分段或不连续的光学表面。在宇宙科学中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Segmented or discontinuous optical surfaces have been known since the Antiquity. They generated numerous applications, the first of which probably being Archimedes's “burning mirrors” intended to concentrate solar energy and destroy hostile sea vessels by fire. This basic idea governed the construction of modern solar furnaces dedicated to fundamental researches on resistant materials placed in extreme conditions, or helio-electrical power plants. Although the manufacturing tolerances of the employed optical surfaces are typically around one millimeter, they still require the utilization of accurate alignment and control methods. Hence the principle of the “backward gazing method” developed at the IMP (Odeillo, French Pyrénées) during my PhD years can be seen as a close natural parent of the adaptive optics techniques that have now become indispensable for astronomy and astrophysics observations. But discontinuous optical surfaces can do much more than focusing light energy. The historical experiments of Fizeau and Michelson demonstrated their ability to measure core astrophysical parameters at very high angular resolution, paving the way for a new generation of astronomical observing facilities. Among those are found multi-aperture stellar interferometers whose individual telescopes may be separated by several hundred meters (such as the Very Large Telescope Interferometer in Chile), new generation Extremely Large Telescopes (ELTs) equipped with segmented primary mirrors (such as twin Keck telescopes or space borne JWST), or futuristic hyper-telescopes looking for direct images of planetary systems orbiting around nearby stars. Such complex facilities whose specifications are becoming more and more ambitious should be co-phased (i.e. behaving together as a single optical system would do) within an accuracy of one-tenth of wavelength for imaging applications, and one-thousandth in the case of nulling interferometers. It then becomes necessary to develop new techniques for modeling and controlling those extremely demanding systems. Some of these techniques are presented here in the frame of future ELTs of 30 meter diameter or greater, and of sparse apertures interferometers hunting for exoplanets such as Darwin and TPF-I. Discontinuous optical surfaces are also present in the field of modern spectroscopy: in addition to conventional diffraction gratings, they have now come into the heart of new generation spectral-imaging instruments, being able to simultaneously imaging astrophysical objects and their spectral decompositions on a single detector chip. Hence the MUSE instrument incorporating twenty-four “image slicers” composed of discontinuous arrays of mirrors will enable the VLT to observe primordial galaxies in the forthcoming years. In view of so many promising applications, it seems quite clear that the techniques of manufacturing, aligning and testing segmented or discontinuous optical surfaces should play a major role in the astrophysical science of our century. In that perspective the SIRIUS test bench developed at Observatoire de la Côte d'Azur in order to evaluate the performance of hyper-telescopes and of their co-phasing methods could represent a key step, as is explained in the conclusion.
机译:自古以来就已经知道分段或不连续的光学表面。他们产生了许多应用,其中第一个可能是阿基米德的“燃烧镜”,其目的是聚集太阳能并用火摧毁敌对的海船。这个基本思想主导着现代太阳能炉的建设,该炉致力于对置于极端条件下的耐火材料或日光发电厂的基础研究。尽管所采用的光学表面的制造公差通常约为一毫米,但是它们仍需要利用精确的对准和控制方法。因此,在我博士学位期间,IMP(法国比利牛斯大区的奥德洛)开发的“向后凝视法”的原理可以被视为自适应光学技术的近亲,而自适应光学技术如今已成为天文学和天体物理学观测中不可或缺的要素。但是不连续的光学表面比聚焦光能能做的更多。 Fizeau和Michelson的历史实验表明,它们能够以非常高的角分辨率测量核心天体物理参数,从而为新一代的天文观测设施铺平了道路。其中发现了多孔径恒星干涉仪,它们的单个望远镜可能相隔几百米(例如智利的超大望远镜干涉仪),配备分段主镜的新一代超大型望远镜(ELT)(如双Keck望远镜)。或太空传播的JWST)或未来派的超望远镜,以寻找围绕附近恒星运行的行星系统的直接图像。对于规格越来越雄心勃勃的此类复杂设施,应在成像应用波长的十分之一波长的精度范围内(即在零波长情况下为精度的千分之一)同相(即像单个光学系统一样表现)。干涉仪。因此,有必要开发新的技术来建模和控制那些极其苛刻的系统。在未来的30米直径或更大的ELT以及稀疏孔径干涉仪寻找系外行星(例如达尔文和TPF-1)的框架中,将介绍其中的一些技术。间断的光学表面在现代光谱学领域中也存在:除了常规的衍射光栅,它们现在已成为新一代光谱成像仪器的核心,能够同时在单个探测器上成像天体物体及其光谱分解芯片。因此,MUSE仪器结合了由不连续的反射镜阵列组成的二十四个“图像切片器”,将使VLT能够在未来几年内观测原始星系。鉴于有如此广阔的应用前景,很显然,制造,对准和测试分段或不连续光学表面的技术应该在本世纪的天体科学中发挥重要作用。从这个角度来看,为评估超望远镜的性能及其同相方法,在蔚蓝海岸天文台开发的SIRIUS测试台可能代表了关键一步。

著录项

  • 作者

    Hénault F.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号