首页> 外文OA文献 >Gene expression data analysis using novel methods: Predicting time delayed correlations and evolutionarily conserved functional modules
【2h】

Gene expression data analysis using novel methods: Predicting time delayed correlations and evolutionarily conserved functional modules

机译:使用新方法进行基因表达数据分析:预测时间延迟的相关性和进化保守的功能模块

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microarray technology enables the study of gene expression on a large scale. One of the main challenges has been to devise methods to cluster genes that share similar expression profiles. In gene expression time courses, a particular gene may encode transcription factor and thus controlling several genes downstream; in this case, the gene expression profiles may be staggered, indicating a time-delayed response in transcription of the later genes. The standard clustering algorithms consider gene expression profiles in a global way, thus often ignoring such local time-delayed correlations. We have developed novel methods to capture time-delayed correlations between expression profiles: (1) A method using dynamic programming and (2) CLARITY, an algorithm that uses a local shape based similarity measure to predict time-delayed correlations and local correlations. We used CLARITY on a dataset describing the change in gene expression during the mitotic cell cycle in Saccharomyces cerevisiae. The obtained clusters were significantly enriched with genes that share similar functions, reflecting the fact that genes with a similar function are often co-regulated and thus co-expressed. Time-shifted as well as local correlations could also be predicted using CLARITY. In datasets, where the expression profiles of independent experiments are compared, the standard clustering algorithms often cluster according to all conditions, considering all genes. This increases the background noise and can lead to the missing of genes that change the expression only under particular conditions. We have employed a genetic algorithm based module predictor that is capable to identify group of genes that change their expression only in a subset of conditions. With the aim of supplementing the Ustilago maydis genome annotation, we have used the module prediction algorithm on various independent datasets from Ustilago maydis. The predicted modules were cross-referenced in various Saccharomyces cerevisiae datasets to check its evolutionarily conservation between these two organisms. The key contributions of this thesis are novel methods that explore biological information from DNA microarray data.
机译:微阵列技术使大规模研究基因表达成为可能。主要挑战之一是设计出一种方法来聚类具有相似表达谱的基因。在基因表达时程中,特定基因可以编码转录因子,从而控制下游的几个基因。在这种情况下,基因表达谱可能会错开,表明后面的基因转录存在时间延迟响应。标准的聚类算法以全局方式考虑基因表达谱,因此经常忽略这种局部时间延迟的相关性。我们已经开发出新颖的方法来捕获表达谱之间的时延相关性:(1)使用动态编程的方法和(2)CLARITY,一种使用基于局部形状的相似性度量来预测时延相关性和局部相关性的算法。我们在描述酿酒酵母有丝分裂细胞周期过程中基因表达变化的数据集上使用了CLARITY。所获得的簇明显富集具有相似功能的基因,这反映了具有相似功能的基因通常被共同调节并因此被共同表达这一事实。时移以及局部相关性也可以使用CLARITY进行预测。在比较独立实验的表达谱的数据集中,标准聚类算法通常会考虑所有基因,根据所有条件进行聚类。这会增加背景噪音,并可能导致仅在特定条件下才会改变表达的基因缺失。我们采用了一种基于遗传算法的模块预测子,该预测子能够识别仅在条件子集中改变其表达的基因组。为了补充马齿til的基因组注释,我们在马齿dis的各种独立数据集上使用了模块预测算法。在各种酿酒酵母数据集中交叉引用了预测的模块,以检查其在这两种生物之间的进化保守性。本文的主要贡献是从DNA芯片数据中探索生物学信息的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号