首页> 外文OA文献 >Cognition as management of meaningful information. Proposal for an evolutionary approach.
【2h】

Cognition as management of meaningful information. Proposal for an evolutionary approach.

机译:认知是对有意义信息的管理。关于进化方法的建议。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Humans are cognitive entities. Our behaviors and ongoing interactions with the environment are\udthreaded with creations and usages of meaningful information, be they conscious or unconscious.\udAnimal life is also populated with meaningful information related to the survival of the individual\udand of the species. The meaningfulness of information managed by artificial agents can also be\udconsidered as a reality once we accept that the meanings managed by an artificial agent are\udderived from what we, the cognitive designers, have built the agent for.\udThis rapid overview brings to consider that cognition, in terms of management of meaningful\udinformation, can be looked at as a reality for animal, humans and robots. But it is pretty clear\udthat the corresponding meanings will be very different in nature and content. Free will and selfconsciousness\udare key drivers in the management of human meanings, but they do not exist for\udanimals or robots. Also, staying alive is a constraint that we share with animals. Robots do not\udcarry that constraint.\udSuch differences in meaningful information and cognition for animal, humans and robots could\udbring us to believe that the analysis of cognitions for these three types of agents has to be done\udseparately. But if we agree that humans are the result of the evolution of life and that robots are a\udproduct of human activities, we can then look at addressing the possibility for an evolutionary\udapproach at cognition based on meaningful information management. A bottom-up path would\udbegin by meaning management within basic living entities, then climb up the ladder of evolution\udup to us humans, and continue with artificial agents.\udThis is what we propose to present here: address an evolutionary approach for cognition, based\udon meaning management using a simple systemic tool.\udWe use for that an existing systemic approach on meaning generation where a system submitted\udto a constraint generates a meaningful information (a meaning) that will initiate an action in order\udto satisfy the constraint [1,2]. The action can be physical, mental or other.\udThis systemic approach defines a Meaning Generator System (MGS). The simplicity of the MGS\udmakes it available as a building block for meaning management in animals, humans and robots.\udContrary to approaches on meaning generation in psychology or linguistics, the MGS approach is\udnot based on human mind. To avoid circularity, an evolutionary approach has to be careful not to\udinclude components of human mind in the starting point.\udThe MGS receives information from its environment and compares it with its constraint. The\udgenerated meaning is the connection existing between the received information and the\udconstraint. The generated meaning is to trigger an action aimed at satisfying the constraint. The\udaction will modify the environment, and so the generated meaning. Meaning generation links\udagents to their environments in a dynamic mode. The MGS approach is triadic, Peircean type.\udThe systemic approach allows wide usage of the MGS: a system is a set of elements linked by a\udset of relations. Any system submitted to a constraint and capable of receiving information from\udits environment can lead to a MGS. Meaning generation can be applied to many cases, assuming\udwe identify clearly enough the systems and the constraints. Animals, humans and robots are then\udagents containing MGSs. Similar MGSs carrying different constraints will generate different\udmeanings. Cognition is system dependent.\udWe first apply the MGS approach to animals with “stay alive” and “group life” constraints. Such\udconstraints can bring to model many cases of meaning generation and actions in the organic\udworld. However, it is to be highlighted that even if the functions and characteristics of life are well\udknown, the nature of life is not really understood. Final causes are difficult to integrate in our\udtoday science. So analyzing meaning and cognition in living entities will have to take into account\udour limited understanding about the nature of life. Ongoing research on concepts like autopoiesis\udcould bring a better understanding about the nature of life [3].\udWe next address meaning generation for humans. The case is the most difficult as the nature of\udhuman mind is a mystery for today science and philosophy. The natures of our feelings, free will\udor self-consciousness are unknown. Human constraints, meanings and cognition are difficult to\uddefine. Any usage of the MGS approach for humans will have to take into account the limitations\udthat result from the unknown nature of human mind.\udWe will however present some possible approaches to identify human constraints where the MGS\udbrings some openings in an evolutionary approach [4, 5]. But it is clear that the better human\udmind will be understood, the more we will be in a position to address meaning management and\udcognition for humans. Ongoing research activities relative to the nature of human mind cover\udmany scientific and philosophical domains [6].\udThe case of meaning management and cognition in artificial agents is rather straightforward with\udthe MGS approach as we, the designers, know the agents and the constraints. In addition, our\udevolutionary approach brings to position notions like artificial constraints, meaning and autonomy\udas derived from their animal or human source.\udWe next highlight that cognition as management of meaningful information by agents goes\udbeyond information and needs to address representations which belong to the central hypothesis\udof cognitive sciences.\udWe define the meaningful representation of an item for an agent as being the networks of\udmeanings relative to the item for the agent, with the action scenarios involving the item.\udSuch meaningful representations embed the agents in their environments and are far from the\udGOFAI type ones [4]. Meanings, representations and cognition exist by and for the agents.\udWe finish by summarizing the points presented and highlight some possible continuations.\ud[1] C. Menant "Information and Meaning" http://cogprints.org/3694/\ud[2] C. Menant “Introduction to a Systemic Theory of Meaning” (short paper)\udhttp://crmenant.free.fr/ResUK/MGS.pdf\ud[3] A. Weber and F. Varela “Life after Kant: Natural purposes and the autopoietic foundations of\udbiological individuality”. Phenomenology and the Cognitive Sciences 1: 97–125, 2002.\ud[4] C. Menant "Computation on Information, Meaning and Representations. An Evolutionary\udApproach" http://www.idt.mdh.se/ECAP-2005/INFOCOMPBOOK/CHAPTERS/10-Menant.pdf\udhttp://crmenant.free.fr/2009BookChapter/C.Menant.211009\ud[5] C. Menant "Proposal for a shared evolutionary nature of language and consciousness"\udhttp://cogprints.org/7067/\ud[6] Philpapers “philosophy of mind” http://philpapers.org/browse/philosophy-of-mind
机译:人类是认知实体。我们的行为和与环境的持续交互\充满了有意义的信息的创建和使用,无论它们是有意识的还是无意识的。\ ud动物生活中也充满了与个体\ udand的生存有关的有意义的信息。一旦我们接受了由人工代理人管理的含义是\从我们(认知设计师)为该代理程序构建的内容中推导出来的,那么\人工代理人管理的信息的意义也可以被视为一个现实。考虑到在管理有意义的\信息方面的认知可以看作是动物,人类和机器人的现实。但是很清楚\ ud,相应的含义在本质和内容上都会有很大的不同。自由意志和自我意识是人类意义管理中的重要动力,但对于动物或机器人来说却不存在。同样,保持生命是我们与动物共同的一种约束。机器人并不会承受这种约束。\ ud对于动物,人类和机器人而言,有意义的信息和认知方面的这些差异可能会使我们相信,必须对这三种类型的主体进行认知分析。但是,如果我们同意人类是生命进化的结果,并且机器人是人类活动的产物,那么我们可以着眼于解决基于有意义的信息管理的认知进化论的可能性。自下而上的路径将\\首先通过在基本生命实体中进行管理的意义开始,然后爬上进化\ udup对我们人类的阶梯,并继续使用人工代理。\ ud这是我们在此提出的内容:解决人类的进化方法认知,基于\ udon使用简单的系统工具进行意义管理。\ ud为此,我们使用了一种现有的意义生成系统方法,其中系统提交的约束产生了有意义的信息(含义),该信息将按顺序发起动作满足约束[1,2]。该动作可以是身体上的,精神上的或其他动作。\ ud这种系统性方法定义了意义生成器系统(MGS)。 MGS \ ud的简单性使其可作为动物,人类和机器人中意义管理的基础。\ ud与心理学或语言学中意义生成的方法相反,MGS方法并非基于人的思想。为避免发生循环,进化方法必须小心,不要在起点处包括人脑的各个部分。\ udMGS从其环境接收信息并将其与约束条件进行比较。 \ udgenerated含义是接收的信息和\ udconstraint之间存在的连接。产生的含义是触发旨在满足约束条件的动作。 \ udaction将修改环境,以及所生成的含义。含义生成以动态模式将\ udagents链接到其环境。 MGS方法是Peadcean类型的三元组。\ ud系统方法允许MGS的广泛使用:系统是由一组\ udset关系链接的一组元素。提交给约束并能够从\ udit环境接收信息的任何系统都可能导致MGS。假设已经足够清楚地识别出系统和约束条件,则含义生成可以应用于许多情况。那么,动物,人类和机器人就是含有MGS的药物。带有不同约束的类似MGS将产生不同的理解。 \ ud我们首先将MGS方法应用于具有“保持生命”和“群体生活”约束的动物。这样的\ ud约束可以将有机\ udworld中的意思生成和动作的许多情况建模。然而,需要强调的是,即使生活的功能和特征是众所周知的,生活的本质并没有真正被理解。最终原因很难整合到我们当今的科学中。因此,分析生物实体中的意义和认知时,必须考虑\ uour对生命本质的有限理解。正在进行的对诸如自动生成等概念的研究可以使人们对生命的本质有更好的理解[3]。我们接下来将探讨人类的意义生成。这种情况是最困难的,因为“超人”思想的本质对于当今的科学和哲学来说都是一个谜。我们的感觉,自由意志\自我意识的本质是未知的。人的约束,含义和认知很难\ u定义。 MGS方法对人类的任何使用都必须考虑到人类思维方式的未知性所造成的局限性。\ ud但是,我们将提出一些可能的方法来识别人为约束,而MGS会在进化方法中带来一些空缺[4,5]。但是很明显,更好的人\\头脑将被理解,我们将更有能力解决人类的意义管理和认知问题。与人类思想的本质有关的正在进行的研究活动覆盖了许多科学和哲学领域[6]。\ ud使用MGS方法,在人工代理中进行意义管理和认知的案例非常简单,因为我们,设计者,认识代理和约束。此外,我们的\进化论方法引入了诸如人工约束,含义和自治\源自动物或人类来源的犹达派之类的概念。\ ud我们接下来强调指出,由代理人管理有意义的信息的认知超越了信息,需要解决表征属于认知科学的中心假设\ ud。\ ud我们将代理的项目的有意义的表示定义为相对于代理的项目的\ ud有意义的网络,并且涉及该项目的操作场景。\ ud此类有意义的表示将代理嵌入其环境中,并且与\ udGOFAI类型的代理相距甚远[4]。 \ ud我们通过总结提出的要点并突出显示一些可能的延续来结束。\ ud [1] C. Menant“信息和意义” http://cogprints.org/3694/ \ ud [2] C. Menant“系统意义理论导论”(简短论文)\ udhttp://crmenant.free.fr/ResUK/MGS.pdf \ ud [3] A. Weber和F. Varela“生活康德之后:自然目的和\ udbiologic个性的自生基础”。现象学与认知科学1:97-125,2002。\ ud [4] C. Menant“信息,意义和表示的计算。一种进化的\ udApproach” http://www.idt.mdh.se/ECAP-2005 /INFOCOMPBOOK/CHAPTERS/10-Menant.pdf\udhttp://crmenant.free.fr/2009BookChapter/C.Menant.211009\ud[5] C. Menant“关于语言和意识的共同进化本质的提案” \ udhttp ://cogprints.org/7067/ \ ud [6] Philpapers“心灵哲学” http://philpapers.org/browse/philosophy-of-mind

著录项

  • 作者

    Menant, Mr Christophe;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号