首页>
外文OA文献
>Analisis Energi dan Fungsi Gelombang Persamaan Dirac Potensial Shape Invariant Hulthen, Eckart dan Rosen Morse dengan Menggunakan Metode Polinomial Romanovski
【2h】
Analisis Energi dan Fungsi Gelombang Persamaan Dirac Potensial Shape Invariant Hulthen, Eckart dan Rosen Morse dengan Menggunakan Metode Polinomial Romanovski
Umi Khoiriyah. S911208006. 2015. “ Analitical Solution Energy Eigen Value and Wave Function of Shape Invariant Hulthen, Eckart and Rosen Morse Potential With Romanovski Polynomial”. Thesis: Program Pascasarjana Ilmu Fisika Universitas Sebelas Maret Surakarta. Advisor: (1). Prof. Dra. Suparmi, M.A., Ph.D (2). Prof. Drs. Cari, M.Sc., M.A., Ph.D ABSTRACT This research is aimed to determine energy levels and wave functions from Dirac equation for Potential Hulthen, Eckart and Rosen Morse using Polinomial Romanovski method. They are a shaped-invariance potential.Recently developed supersymmetric in field theory has been successfully employed to make a complete mathematical analysis of the reason behind exact solvability of some shaped-invariant potentials in a close form. Then, by operating the lowering operator we get the ground state wave function, and the excited state wave function can be gained by operating raising operator. Non central potential Rosen Morse, Hulthen and Eckart are the potential which separated variable. Wafe function of radial and angular for Hulthen Plus Rosen Morse Potential and Eckart Hulthen Plus Rosen Morse Potential are solved by Romanovski polynomials method. Eigen function that be found can’t be solved by analytical method or approximation value, so that must be solved by numerical method. To solve Dirac equation with Romanovski polynomials we must reduce the two order differential equation to be intermediatery Hypergeometri differential equation with substituting of suitable variable with the Romanovski parameters. To find energy eigen and wave function can be found by subtituting Romanovski’s wave function like into the intermediatery Hypergeometri differential equation and derivating until be obtained the Romanovski’s differential equation. From its Romanovski’s Hypergeometri equation we would determine the energy levels and wave function. So it formed the level of Energy and the wave functions, consist of radial and angular part, are given in Romanovski polynomial form. Energy spectrum, wave functions and probability density graph have been visualized by Matlab 2013. Visualization of radial and polar wave functions might be used to description by the probability of particle position radially and polarly. Key word: Dirac equation, Shape-Invariant Potential, Romanovski polinomial.
展开▼
机译:Umi Khoiriyah。 S911208006。 2015年。“使用罗曼诺夫斯基多项式的形状不变Hulthen,Eckart和Rosen Morse势的解析解能量本征值和波函数”。论文:帕斯卡萨里亚娜·伊尔穆·费西卡大学Sebelas Maret Surakarta大学。顾问:(1)。德拉教授Suparmi,M.A.,博士学位(2)。教授Cari,M.Sc.,M.A.,Ph.D摘要本研究旨在通过Polinomial Romanovski方法从Dirac方程确定潜在的Hulthen,Eckart和Rosen Morse的能级和波函数。它们是形状不变的势。场论中最近发展的超对称已成功地用于对某些形状不变的势以紧密形式精确可溶的原因进行完整的数学分析。然后,通过操作下降算子,我们得到基态波函数,而通过操作上升算子可以得到激发态波函数。非中心势Rosen Morse,Hulthen和Eckart是分离变量的势。通过罗曼诺夫斯基多项式方法求解了Hulthen Plus Rosen Morse势和Eckart Hulthen Plus Rosen Morse势的径向和角Wafe函数。发现的本征函数无法通过解析方法或近似值求解,因此必须通过数值方法求解。为了用罗曼诺夫斯基多项式求解狄拉克方程,我们必须将二阶微分方程简化为中间型超几何微分方程,并用罗曼诺夫斯基参数代替合适的变量。要找到能量本征和波动函数,可以通过将罗曼诺夫斯基的波动函数代入中间Hypergeometri微分方程,然后推导直至获得罗曼诺夫斯基的微分方程来找到。根据其罗曼诺夫斯基的Hypergeometri方程,我们可以确定能级和波函数。因此它形成了能级,并且波函数由径向和角部分组成,以罗曼诺夫斯基多项式形式给出。 Matlab 2013已可视化了能谱,波函数和概率密度图。径向和极波函数的可视化可用于描述粒子在径向和极性上的位置概率。关键词:狄拉克方程,形状不变势,罗曼诺夫斯基政策。
展开▼